
Appearing in the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01), 2001

Adaptive Web Navigation for Wireless Devices

Corin R. Anderson, Pedro Domingos, Daniel S. Weld
University of Washington, Seattle, WA, USA

{corin, pedrod, weld }@cs.washington.edu

Abstract
Visitors who browse the web from wireless PDAs,
cell phones, and pagers are frequently stymied by
web interfaces optimized for desktop PCs. Simply
replacing graphics with text and reformatting ta-
bles does not solve the problem, because deep link
structures can still require minutes to traverse.
In this paper we develop an algorithm, MINPATH,
that automatically improves wireless web naviga-
tion by suggesting usefulshortcut linksin real time.
M INPATH finds shortcuts by using a learned model
of web visitor behavior to estimate the savings of
shortcut links, and suggests only the few best links.
We explore a variety of predictive models, includ-
ing Näıve Bayes mixture models and mixtures of
Markov models, and report empirical evidence that
M INPATH finds useful shortcuts that save substan-
tial navigational effort.

1 Introduction
Perkowitz and Etzioni[1997] challenged the AI community
to build adaptive web sites: sites that automatically improve
their organization and presentation by learning from visitor
access patterns. In the spirit of this challenge, many research
projects have been proposed and implemented[Perkowitz and
Etzioni, 2000; Finket al., 1996; Yanet al., 1996; J̈uhneet
al., 1998; Joachimset al., 1997; Pazzani and Billsus, 1999;
Sarukkai, 2000]. Many of these projects, like much of the
Web today, assume the visitor is browsing with a large color
display and fast network connection. In addition, these works
typically assume that a visitor’s interest in a site lies in view-
ing many pages of content, as opposed to a specific destina-
tion. Consequently, the adaptations they emphasize include
graphical highlighting of existing hypertext links and auto-
matic generation of indices that link to many pages.

However, a growing community of web visitors does not
fit this mold: wireless web visitors, who browse content from
cell phones, pagers, and wireless PDAs. These mobile de-
vices do not have the same display or bandwidth capabili-
ties as their desktop counterparts, but sites (adaptive or oth-
erwise) nonetheless deliver the same content to both desktop
PCs and mobile devices. Moreover, our experience with mo-
bile visitors indicates that they seldom browse through many
pages, but rather are interested only in specific destinations,

and would like to reach those pages by following as few
links as possible. While this observation is also largely true
of desktop visitors, reducing the number of links followed
is particularly poignant for mobile visitors for two reasons.
First, simply finding a specific link on a page requires the
visitor to spend considerable time scrolling through the page
on a tiny screen. Second, because of the low bandwidth and
high latency of wireless networks, following a link to even
a simple page of text can take as long as tens of seconds.
Consequently, navigating through even four or five different
pages can easily take several minutes, frustrating visitors to
the point of abandoning their effort.

We believe adaptive web sites hold a great promise for im-
proving the web experience for wireless devices, and, con-
versely, that wireless web browsing is a “killer app” of adap-
tive web sites. In ongoing research[Andersonet al., 2001],
we have developed a general framework for adapting web
sites for wireless visitors that takes into account the value
visitors receive for viewing a page and the effort required to
reach that page (i.e., the amount of scrolling and number of
links followed). In this paper, we explore a particular adapta-
tion for use in our framework: automatically addingshortcut
links to each page a visitor requests. We assume that wireless
visitor behavior is dominated byinformation gathering tasks,
which can be accomplished by viewing specific destination
pages on the site. Shortcut links connect two pages not other-
wise linked together and can help visitors reach these destina-
tions as quickly as possible. For example, ifA→ B denotes
a link, and the only path fromA toD isA→ B → C → D,
then a shortcutA→ D saves the visitor over 66% of the nav-
igation effort, and perhaps more if one counts the scrolling
avoided on the interim pages. Of course, there is a tradeoff
between the number of shortcut links and their usefulness. In
an absurd example, if one added shortcuts between every pair
of pages on the site, a visitor could reach any destination in
one link, but finding the right link would be practically im-
possible. Thus, we concentrate on generating only a small
number of high quality shortcuts, for example, only as many
as will fit on the wireless device without scrolling.

This paper makes the following contributions:

• We present an algorithm, MINPATH, for automatically
finding high-quality shortcuts for mobile visitors in real
time. Offline, MINPATH learns a model of web usage
based on server access logs, and uses this model at run-
time to predict the visitor’s ultimate destination. MIN-

PATH is based on the notion of theexpected savingsof a
shortcut, which incorporates the probability that the link
is useful and the amount of visitor effort saved.

• We evaluate a variety of visitor models, including Naı̈ve
Bayes mixture models and mixtures of Markov models,
and discuss their applicability in MINPATH.

• We provide experimental evidence that suggests a mix-
ture of Markov models is the best model for MINPATH,
and that MINPATH substantially reduces the number of
links mobile visitors need to follow, and thus their navi-
gational effort.

In the next section, we define our problem and present the
M INPATH algorithm for finding shortcuts. Section 3 explores
variations on the models for predicting web usage and sec-
tion 4 evaluates MINPATH using these models. Section 5 dis-
cusses related research, and we conclude in section 6.

2 Finding shortcuts with MinPath
We begin by defining terminology, to facilitate the discussion.

2.1 Definitions
A trail [Wexelblat and Maes, 1999] is a sequence of page re-
quests made by a single visitor that is coherent in time and
space. Coherence in time requires that each subsequent re-
quest in the trail occurs within some fixed time window of
the previous request. Coherence in space requires that each
subsequent request be the destination of some link on the pre-
vious page. More precisely, if we denote the time of the re-
quest for pagepi astime(pi), then a trailT = 〈p0, p1, . . . pn〉
is a sequence of page requests for which:

• ∀ i, 0 ≤ i < n, pi → pi+1 exists; and

• ∀ i, 0 ≤ i < n,
time(pi) ≤ time(pi+1) ≤ time(pi) + timeout

The length of a trail is n, the number of links followed.
From the perspective of the adaptive web site which is watch-
ing a visitor’s behavior midway through the trail, only apre-
fix, 〈p0, . . . , pi〉 is known. The trailsuffix, 〈pi+1, . . . , pn〉,
needs to be hypothesized by the adaptive web site.

2.2 Finding shortcuts
The objective of our work is to provide shortcut links to vis-
itors to help shorten long trails. Our system adds shortcut
links to every page the visitor requests. Ideally, the short-
cuts suggested will help the visitor reach the destination of
the trail with as few links as possible. We state the shortcut
link selection problem precisely as:

• Given: a visitorV , a trail prefix〈p0, . . . , pi〉, and a max-
imum number of shortcutsm;

• Output: a list of shortcutspi → q1, . . . , pi → qm that
minimizesthe number of links the visitor must follow
betweenpi and the visitor’s destination.

The last page in the trail prefix,pi, is the page the visi-
tor has requested most recently, and the page on which the
shortcuts are placed. We calculate thesavingsthat a single
shortcutpi → q offers as the number of links the visitor can
avoid by following that shortcut. If we know the entire trail
T = 〈p0, . . . , pi, . . . , pn〉, then the number of links saved is:

{
j − i− 1 if q = pj for somei < j ≤ n
0 otherwise

That is, if the shortcut leads to a page further along the trail,
then the savings is the number of links skipped (we subtract
one because the visitor must still follow a link — the shortcut
link). If the shortcut leads elsewhere, then it offers no savings.

2.3 The MinPath algorithm
If one had knowledge of the complete trail
〈p0, . . . , pi, . . . pn〉, selecting the best shortcut at any
pagepi would be easy: simply,pi → pn. Of course, at
runtime, a visitor has viewed only a trail prefix, and the
adaptive web site must infer the remaining pages. Our ap-
proach relies on a model of the visitor’s behavior to compute
a probability for every possible trail suffix〈qi+1, . . . , qn〉 on
the site. Intuitively, these suffixes are all the possible trails
originating frompi. Given a suffix and its probability, we
assign anexpected savingsto the shortcutpi → qj to each
qj in the suffix as the product of the probability of the suffix
and the number of links saved by the shortcut. Note that a
particular shortcutpi → qj may appear in many trail suffixes
(i.e., many trail suffixes may pass through the same pageqj),
and so the expected savings of a shortcut is the sum of the
savings of the shortcut for all suffixes.

A brief example will elucidate these ideas. Suppose that a
visitor has requested the trail prefix〈A,B,C〉 and we wish to
find shortcuts to add to pageC. Suppose that our model of the
visitor indicates there are exactly two sequences of pages the
visitor may complete the trail with:〈D,E, F,G,H〉, with a
probability of 0.6, and〈I, J,H,K〉 with a probability of 0.4.
The expected savings from the shortcutC → E would be
0.6 × 1 = 0.6, because the trail with pageE occurs with
probability 0.6 and the shortcut saves only one link. The ex-
pected savings for shortcutC → H includes a contribution
from both suffixes:0.6× 4 + 0.4× 2 = 2.4 + 0.8 = 3.2.

The MINPATH algorithm is shown in Table 1. TheExpect-
edSavings function constructs the trail suffixes by traversing
the directed graph induced by the web site’s link structure
(often called the “web graph”). Starting at the page last re-
quested by the visitor,pi, ExpectedSavings computes the
probability of following each link and recursively traverses
the graph until the probability of viewing a page falls below a
threshold, or a depth bound is exceeded. The savings at each
page (CurrentSavings) is the product of the probability,Ps,
of reaching that page along suffixTs and the number of links
saved,l − 1. TheMinPath function collates the results and
returns the bestm shortcuts. The next section describes how
we obtain the model required by MINPATH.

3 Predictive Models
The key element to MINPATH ’s success is the predictive
model of web usage; in this section, we describe the mod-
els we have evaluated. The probabilistic model MINPATH
uses must predict the next web page requestpi given a trail
prefix 〈p0, . . . , pi−1〉 and the visitor’s identityV (the identity
can lead to information about past behavior at the site, de-
mographics, etc.):P (pi = q|〈p0, . . . , pi−1〉, V). Of course,
a model may condition this probability on only part or even
none of the available data; we explore these and other vari-
ations in this section. To simplify our discussion, we de-
fine a “sink” page that visitors (implicitly) request when they

Inputs:
T Observed trail prefix〈p0, . . . , pi〉
pi Most recent page requested
V Visitor identity
m Number of shortcuts to return

MinPath(T, pi, V,m)
S ← ExpectedSavings(pi, T, V, 〈〉, 1.0, 0, {})
SortS by expected page savings
Return the bestm shortcuts inS

Inputs:
p Current page in recursive traversal
T Trail prefix (observed page requests)
V Visitor identity
Ts Trail suffix (hypothesized pages in traversal)
Ps Probability of suffixTs
l Length of suffixTs
S Set of shortcut destinations and their savings

ExpectedSavings(p, T, V, Ts, Ps, l, S)
If (l ≥ depth bound) or (Ps ≤ probability threshold)

ReturnS
If (l ≤ 1)

CurrentSavings← 0
Else

CurrentSavings← Ps × (l − 1)
If p 6∈ S

Add p to S with Savings(p) = CurrentSavings
Else

Savings(p)← Savings(p) + CurrentSavings
Trail ← concatenateT andTs
For each linkp→ q
Pq ← probability of followingp→ q givenTrail andV
Tq ← concatenateTs and{q}
S ← ExpectedSavings(q, T, V, Tq, Pq, l + 1, S)

ReturnS

Table 1:MinPath algorithm.

end their browsing trails. Thus, the probabilityP (pi =
psink|〈p0, . . . , pi−1〉, V) is the probability that the visitor will
request no further pages in this trail. Finally, note that the
models are learned offline, prior to their use by MINPATH.
Only the evaluation of the model must run in real time.

3.1 Unconditional model
The simplest model of web usage predicts the next page re-
questpi without conditioning on any information. We learn
this model by measuring the proportion of requests for each
pageq on the site during the training period1:

P (pi = q) =
number of timesq requested
total number of page requests

We assume the visitor can view a page only if it is linked
from the current page. Thus MINPATH forces the probabili-
ties of pages not linked from the current page to be zero and

1More precisely, throughout our implementation we use MAP
estimates with Dirichlet priors.

renormalizes the probabilities of the available links. If the
current page ispi−1, then MINPATH calculates:

P (pi = q|pi−1) =

{
P (pi=q)∑
q′
P (pi=q′)

if pi−1 → q exists

0 otherwise
where theq′ are all the pages to whichpi−1 links.

Because we have a limited volume of training data (ap-
proximately 129,000 page requests for approximately 8,000
unique URLs in a site with 240,000 web pages), we cannot
build a model that predicts each and every page — many
pages are requested too infrequently to reliably estimate their
probability. Instead, we group pages together to increase their
aggregate usage counts, and replace page requests by their
corresponding group label (much in the spirit of[Zukerman
et al., 2000]). Specifically, we use the hierarchy that the URL
directory structure imposes as a hierarchical clustering of the
pages, and select only the most specific nodes (the ones clos-
est to the leaves) that account for some minimum amount of
traffic, or usage, on the site. The pages below each node share
a common URL prefix, orstem, which we use as the label of
the node. By varying the minimum usage threshold, we select
more or fewer nodes; in section 4, we report how MINPATH ’s
performance is correspondingly affected.

3.2 Näıve Bayes mixture model
The unconditional model assumes all trails on the site are
similar — that a single model is sufficient to accurately cap-
ture their behavior. Common intuition suggests this assump-
tion is false — different visitors produce different trails, and
even the same visitor may follow different trails during sep-
arate visits. As an alternative, we hypothesize that each trail
belongs to one (or a distribution) ofK differentclusters, each
described by a separate model. We can thus compute the
probability of requesting pageq by conditioning on the clus-
ter identityCk:

P (pi = q|〈p0, . . . , pi−1〉) =
K∑
k=1

P (pi = q|Ck)P (Ck|〈p0, . . . , pi−1〉) (1)

The result is amixture modelthat combines the probabil-
ity estimatesP (pi = q|Ck) of theK different models ac-
cording to a distribution over the models. By Bayes’ theo-
rem,P (Ck|〈p0, . . . , pi−1〉) ∝ P (Ck)P (〈p0, . . . , pi−1〉|Ck).
To calculateP (〈p0, . . . , pi−1〉|Ck), we make the Näıve
Bayes assumption that page requests in the trail are inde-
pendent given the cluster, thus:P (〈p0, . . . , pi−1〉|Ck) =∏
j=0...i−1 P (pj |Ck). The resulting model is aNäıve Bayes

mixture model(similar to those used in AUTOCLASS[Cheese-
man et al., 1988]) for which we learn the model parame-
tersP (pi = q|Ck) and the cluster assignment probabilities
P (Ck) using the EM algorithm[Dempsteret al., 1977].

The mixture model uses the probabilities
P (Ck|〈p0, . . . , pi−1〉) as a “soft” assignment of the trail to
the cluster — each clusterCk contributes fractionally in
the sum in Equation 1. Alternatively, we may use a “hard”
assignment of the trail to the most probable cluster,C∗. We
explore both of these possibilities in section 4. The value of
K may be fixed in advance, or found using holdout data. For
each value ofK, we compute the likelihood of the holdout

data given the previously learned model, and choose theK
that maximizes the holdout likelihood.

An additional piece of information useful when selecting
the cluster assignment is the visitor’s identity, which we can
incorporate by conditioning Equation 1 onV . If we assume
that page requests are independent of the visitor given the
cluster, then the only change to the right side of Equation 1
is thatP (Ck) becomesP (Ck|V). Unlike an individual trail,
a visitor’s behavior may not be well represented by any sin-
gle model in the mixture. Thus, we represent a visitor as a
mixture of models, and estimate theP (Ck|V) as the propor-
tion of the visitor’s history that is predicted byCk. Specif-
ically, let H = {T1, . . . , Th} be the set ofh trails the visi-
tor has produced on the site previous to the current visit, and
P (Ti|Cj) the probability that clusterCj produced trailTi;
thenP (Ck|V) =

∑h
i=1 P (Ti|Ck)/h.

3.3 Markov models
Both the unconditional and Naı̈ve Bayes mixture models ig-
nore a key piece of information from the web accesses: the
sequential nature of the page trails. Afirst-order Markov
model, on the other hand, incorporates this information by
conditioning the probability of the next page on the previ-
ous page:P (pi = q|pi−1). The Markov model is trained by
counting the transitions from pagespi−1 to pi in the train-
ing data, and by counting how often each page appears as
the initial request in a trail. As we did earlier, we replaced
the URLs of page requests with URL stems to increase the
volume of relevant training data. The need for this transfor-
mation is even greater for the Markov model because it has
quadratically more probability values to estimate than the un-
conditional model, and the events (the linkspi−1 → pi) are
more rare.

In addition to a single Markov model, we also evaluate
M INPATH using a mixture of Markov models[Cadezet al.,
2000]. We use the same EM-based method to build these
mixtures as we did to learn the Naı̈ve Bayes mixture model.

3.4 Positional and Markov/Positional models
In addition to conditioning the probability on the last re-
quested page, we also consider conditioning on the ordinal
position of the request in the visitor’s trail:P (pi = q|i) or
P (pi = q|i, pi−1). Effectively, this model is equivalent to
training a separate model (either unconditional or Markov)
for each position in the trail (although, for practical purposes,
we treat all positions after some limitL as the same position).
Visual inspection of the training trails led us to hypothesize
that these models may better predict behavior, although con-
ditioning on the additional information increases the amount
of training data necessary to properly fit the model.

4 Results
We evaluate MINPATH ’s performance on usage at our home
institution’s web site. We used web access data during
September 2000 to produce a training set of 35,212 trails (ap-
proximately 20 days of web usage) and a test set of 2,500
trails (approximately 1.5 days of usage); the time period
from which the test trails were drawn occurred strictly after
the training period. During the training and testing periods,
11,981 unique pages were requested from the total population

of 243,119 unique URLs at the site. We selected only those
trails with link length at least two, because shorter trails can-
not be improved. We set MINPATH ’s link depth bound to 8
and probability threshold to10−5; in all our experiments the
probability threshold proved to be the tighter bound.

We measure MINPATH ’s performance by the number of
links a visitor must follow to reach the end of the trail. We
estimate visitor behavior when provided shortcuts by making
two assumptions. First, we assume that, when presented with
one or more shortcuts that lead to destinations along the visi-
tor’s trail, the visitor will select the shortcut that leads farthest
along the trail (i.e., the visitor greedily selects the apparently
best shortcut). Second, when no shortcuts lead to pages in the
visitor’s trail, the visitor will follow the next link in the trail
(i.e., the visitor will not erroneously follow a shortcut). Note,
finally, that MINPATH places shortcuts on each page the vis-
itor requests, and so the visitor may follow multiple shortcut
links along a single trail.

Without shortcuts, the average length of trails in the test
set is 3.42 links. Given an oracle that could predict the ex-
act destination of the visitor’s current trail, MINPATH could
reduce the trail to exactly one link. The difference between
3.42 links and one link is the range of savings MINPATH can
offer web visitors.

We first explored the relationship between the minimum
URL usage threshold and the performance of MINPATH. We
compared thresholds of 1% (which produces 42 URL stems),
0.5% (78 stems), 0.025% (1,083 stems), and 0.0% (all the
unique URLs in the training data). We found that MIN-
PATH ’s performance improves as we increase the number of
URL stems, until the threshold falls below 0.025%. After that
point, the average number of links per trail increases; we hy-
pothesize that, because of data sparseness, we cannot learn
the model as well. Thus, for all the experiments in this sec-
tion, we use the best threshold we found, 0.025%. In ongoing
work, we are evaluating the use of a lower threshold when
M INPATH is given substantially more training data.

We next compared MINPATH ’s performance when using a
variety of models (see Figure 1). The first column shows the
number of links followed in the unmodified site. In the sec-
ond and third sets of columns, MINPATH uses, respectively,
an unconditional and Markov model and produces 1, 3, or 5
shortcuts. In the last two sets, MINPATH uses mixture mod-
els of either 10 or 25 clusters, and selects the distribution of
the models in the mixtures based on only the current trail pre-
fix (ignoring past visitor behavior). This graph demonstrates
first that MINPATH does reduce the number of links visitors
must follow — when using a mixture of Markov models and
suggesting just three shortcuts, MINPATH can save an aver-
age of 0.97 links, or 40% of the possible savings. Second, we
see that the Markov model, by conditioning on the sequence
information, outperforms the unconditional model substan-
tially — three shortcuts suggested with the Markov model
are better than five shortcuts found with the unconditional
model. Third, these results indicate the mixture models pro-
vide a slight advantage over the corresponding single model
(for example, 2.72 for the Naı̈ve Bayes mixture model versus
2.75 for the unconditional model). We computed the average
of the difference in trail length between the single model and
the mixture model for each test trail, and found the gains are
significant at the 5% level. Finally, we found that the dif-

3.42

3.13

2.75
2.63

2.74

2.47
2.31

2.72 2.70

2.45 2.45

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00
A

ve
ra

g
e

o

f
lin

ks
 p

er
 t

ra
il

Unmodified Unconditional
model

Markov
model

Naïve Bayes
mixture model

Mixture of
Markov models

10 10 2525

1 shortcut
3 shortcuts

5 shortcuts

0 shortcuts

Figure 1:MinPath’s performance. Each column shows the
average number of links followed in a trail. The mixture
model columns are annotated with the number of clusters. All
error-bars denote 95% confidence intervals.

3.27

2.87
2.70

2.48

2.98

2.78
2.70

2.47

2.81
2.72

2.52 2.45

2.79 2.72
2.55

2.46

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Naïve Bayes, hard Naïve Bayes, soft Markov, hard Markov, soft

A
ve

ra
g

e

lin
ks

 p
er

 t
ra

il

Uniform
Past trails only
Current trail only
Past trails and current trail

Figure 2:Varying model assignment strategy.Each of the
four series represents a different model assignment strategy.

ferences between 10 and 25 clusters in the mixture are not
statistically significant.

In Figure 2, we compare methods for selecting the mix-
ture distribution for a trail prefix, using mixtures of 10 mod-
els. Each group of columns shows a different model and as-
signment type (hard or soft) combination. In each group, we
condition the assignment on no information (i.e., we use a
uniform distribution for the soft assignment and random se-
lection for the hard assignment), the visitor’s past trails, the
visitor’s current trail, and both the past and current trails. Our
first conclusion is that soft assignment is a better choice for
both mixture models (significant at the 5% level). Second,
both past trails and the current trail prefix help MINPATH se-
lect an appropriate assignment to the cluster models. How-
ever, the combination of both features is not significantly bet-
ter than using just the current trail prefix with the Naı̈ve Bayes
mixture model, and does slightly worse than just the current
trail with the mixture of Markov models. This result is some-
what surprising; we had expected, especially when the prefix
is short, that the past trails would provide valuable informa-
tion. Apparently, however, even the first one or two page

requests in a trail are sufficient to assign it to the appropri-
ate clusters. In future work we will investigate if this result
remains true for larger sites.

Our last variation of models conditions the probability on
the ordinal position of the page request in the trail. We com-
pared the unconditional and Markov models against posi-
tional and Markov/positional models, choosing several values
of the limitL of number of positions. In all cases, MINPATH
did not perform significantly differently when using the posi-
tional information than when ignoring the position.

We finally note that MINPATH ’s running time is quite
small. The models MINPATH uses are learned offline, but the
process usually requires only several minutes. Given a model
and the trail prefix, MINPATH finds a set of shortcuts in 0.65
seconds on an average desktop PC, fast enough to suggest
shortcuts in real time for wireless visitors.

5 Related work
Perkowitz [2001] addresses the shortcut link problem, but
uses a simpler shortcut prediction method: for each pageP
viewed on the site, record how often every other pageQ is
viewed afterP in some trail. When pageP is requested in
the future, the shortcuts are the topm most-requested pages
Q. Effectively, this approach estimates the probability that
a visitor atP will eventually viewQ by counting how often
this event has occured in the training data. MINPATH also
estimates this probability, but does so by composing the page
transition probabilities along a trail through the site. The ad-
vantage of our approach is that it reduces data sparseness,
although at the expense of making a first-order assumption
that may not hold in practice. However, experience in other
applications (e.g., speech, NLP, computational biology) sug-
gests the advantage outweighs the disadvantage. MINPATH
offers two additional improvements relative to Perkowitz’s
approach. First, MINPATH can build more accurate models
of visitor behavior by clustering visitors and building mix-
ture models; in contrast, Perkowitz’s approach builds a single
shortcut table for all the visitors at the site. Second, MIN-
PATH admits a more versatile selection of shortcuts. For ex-
ample, we are currently extending MINPATH to calculate the
expected savings of each shortcut given the existence of the
other shortcuts added to the requested page. Perkowitz’s ap-
proach cannot take advantage of this conditional information,
because it derives its recommendations directly from the orig-
inal usage data.

Our MINPATH algorithm shares many traits with a num-
ber of web page recommendation systems developed in re-
cent years. Letizia[Lieberman, 1995] is a client-side agent
that browses the web in tandem with the visitor. Based on
the visitor’s actions (e.g., which links the visitor followed,
whether the visitor records a page in a bookmarks file, etc.),
Letizia estimates the visitor’s interest in as-yet-unseen pages.
Unlike MINPATH, which resides on a web server, Letizia is
constrained to the resources on the web visitor’s browsing de-
vice, and is thus not well suited to a wireless environment. In
addition, Letizia cannot leverage the past experiences ofother
visitors to the same site — Letizia knows about the actions of
only its visitor.

WebWatcher[Joachimset al., 1997], Ariadne [Jühne et
al., 1998], and adaptive web site agents[Pazzani and Bill-

sus, 1999] are examples of web tour guides, agents that help
visitors browse a site by suggesting which link each visitor
should view next. With the assistance of a tour guide, visi-
tors can follow trails frequently viewed by others and avoid
becoming lost. However, tour guides assume that every page
along the trail is important, and typically are limited to only
suggesting which link on a page to follow next (as opposed
to creating shortcuts between pages).

SurfLen[Fu et al., 2000] and PageGather[Perkowitz and
Etzioni, 2000] suggest pages to visit based on page requests
co-occurrent in past sessions2. These algorithms suggest the
top m pages that are most likely to co-occur with the visi-
tor’s current session, either by presenting a list of links (Sur-
fLen) or by constructing a new index page containing the
links (PageGather). However, both of these systems assume
the visitor can easily navigate a lengthy list of shortcuts, and
thus provide perhaps dozens of suggested links. MINPATH
improves on these algorithms by factoring in the relative ben-
efit of each shortcut, and suggesting only the few best links
specific to each page request.

The predictive web usage models we present are related
to previous works on sequence prediction and web usage
mining. These works are too numerous to review here, but
we mention two closely related ones. Most similar to our
own work, WebCANVAS[Cadezet al., 2000] is a system
for visualizing clusters of web visitors using a mixture of
Markov models. We apply similar models to web behavior,
although our goal is to build predictive structures, while Web-
CANVAS emphasizes visualizing the clusters themselves.
Sarukkai[2000] uses a Markov model of web usage to sug-
gest the most probable links a visitor may follow, and notes
the need to reduce the size of the model by clustering the
URLs. Our work explores this model as well as many oth-
ers, and uses the expected savings of a link, not just the link
probability, to sort the resulting suggestions.

6 Conclusions
Wireless web devices will soon outnumber desktop browsers,
and sites must be prepared to deliver content suited to their
unique needs. Because of the high cost of navigation on a mo-
bile device,shortcut linksare a fruitful adaptation to augment
existing content. In this paper we have made the following
contributions:

• We developed the MINPATH algorithm, which finds
shortcut links targeted for each web visitor’s informa-
tion gathering behavior;

• We explored several predictive models of web usage and
evaluated how they perform with MINPATH;

• We provided empirical evidence that MINPATH can find
useful shortcut links. Using a mixture of Markov mod-
els, MINPATH can save wireless visitors more than 40%
of the possible link savings.

M INPATH offers many fruitful lines of continued research,
and we are currently exploring several directions. One di-
rection is studying how MINPATH will scale to larger sites,

2A session is like a trail but relaxes the requirement of coherence
in space.

with more pages, more links between pages, and more traf-
fic. Another is automatically selecting concise and descrip-
tive anchor texts for shortcut links. In a third direction we are
integrating MINPATH with our general framework for adapt-
ing web sites, which includes a more elaborate visitor model
and incorporates the cost of adding a shortcut link and the
probability of erroneously following a shortcut. Finally, we
are currently conducting a user study to evaluate MINPATH
on a fielded web site.

References
[Andersonet al., 2001] C. R. Anderson, P. Domingos, and D. S.

Weld. Personalizing web sites for mobile users. InProc. 10th
Intl. WWW Conf., 2001.

[Cadezet al., 2000] I. V. Cadez, D. Heckerman, C. Meek, P. Smyth,
and S. White. Visualization of navigation patterns on a web site
using model based clustering. InProc. 6th Intl. Conf. on Knowl-
edge Discovery and Data Mining, 2000.

[Cheesemanet al., 1988] P. Cheeseman, J. Kelly, M. Self, J. Stutz,
W. Taylor, and D. Freeman. AutoClass: A Bayesian classification
system. InProc. 5th Intl. Conf. on Machine Learning, 1988.

[Dempsteret al., 1977] A. Dempster, N. Laird, and D. Rubin. Max-
imum likelihood from incomplete data via the EM algorithm.J.
Royal Stat. Soc., Ser. B, 39(1):1–38, 1977.

[Fink et al., 1996] J. Fink, A. Kobsa, and A. Nill. User-oriented
Adaptivity and Adaptability in the AVANTI Project. InDesigning
for the Web: Empirical Studies, Microsoft Usability Group, 1996.

[Fu et al., 2000] X. Fu, J. Budzik, and K. J. Hammond. Mining
navigation history for recommendation. InProc. 2000 Conf. on
Intelligent User Interfaces, 2000.

[Joachimset al., 1997] T. Joachims, D. Freitag, and T. Mitchell.
WebWatcher: A tour guide for the World Wide Web. InProc.
15th Intl. Joint Conf. on Art. Int., 1997.

[Jühneet al., 1998] J. J̈uhne, A. T. Jensen, and K. Grønbæk. Ari-
adne: a Java-based guided tour system for the World Wide Web.
In Proc. 7th Intl. WWW Conf., 1998.

[Lieberman, 1995] H. Lieberman. Letizia: An agent that assists
web browsing. InProc. 14th Intl. Joint Conf. on Art. Int., 1995.

[Pazzani and Billsus, 1999] M. J. Pazzani and D. Billsus. Adaptive
web site agents. InProc. 3rd Intl. Conf. on Autonomous Agents,
1999.

[Perkowitz and Etzioni, 1997] M. Perkowitz and O. Etzioni. Adap-
tive web sites: an AI challenge. InProc. 15th Intl. Joint Conf. on
Art. Int., 1997.

[Perkowitz and Etzioni, 2000] M. Perkowitz and O. Etzioni. To-
wards adaptive web sites: Conceptual framework and case study.
Art. Int. J., 118(1–2), 2000.

[Perkowitz, 2001] M. Perkowitz.Adaptive Web Sites: Cluster Min-
ing and Conceptual Clustering for Index Page Synthesis. PhD
thesis, Dept. of Comp. Sci. and Eng., Univ. of Washington, 2001.

[Sarukkai, 2000] R. R. Sarukkai. Link prediction and path analysis
using Markov chains. InProc. 9th Intl. WWW Conf., 2000.

[Wexelblat and Maes, 1999] A. Wexelblat and P. Maes. Footprints:
History-rich tools for information foraging. InProc. ACM CHI
1999 Conf. on Human Factors in Comp. Sys., 1999.

[Yanet al., 1996] T. Yan, M. Jacobsen, H. Garcia-Molina, and
U. Dayal. From user access patters to dynamic hypertext link-
ing. In Proc. 5th Intl. WWW Conf., 1996.

[Zukermanet al., 2000] I. Zukerman, D. Albrecht, A. Nicholson,
and K. Doktor. Trading off granularity against complexity in pre-
dictive models for complex domains. InProc. 6th Intl. Pacific
Rim Conf. on Art. Int., 2000.

