
Relational Markov Models and their Application to
Adaptive Web Navigation

Corin R. Anderson, Pedro Domingos, Daniel S. Weld
Department of Computer Science and Engineering

University of Washington, Seattle, WA, USA
{corin, pedrod, weld }@cs.washington.edu

ABSTRACT
Relational Markov models (RMMs) are a generalization of Markov
models where states can be of different types, with each type de-
scribed by a different set of variables. The domain of each variable
can be hierarchically structured, and shrinkage is carried out over
the cross product of these hierarchies. RMMs make effective learn-
ing possible in domains with very large and heterogeneous state
spaces, given only sparse data. We apply them to modeling the
behavior of web site users, improving prediction in our PROTEUS

architecture for personalizing web sites. We present experiments
on an e-commerce and an academic web site showing that RMMs
are substantially more accurate than alternative methods, and make
good predictions even when applied to previously-unvisited parts
of the site.

1. INTRODUCTION
Markov models [26] are widely used to model sequential pro-

cesses, and have achieved many practical successes in areas such
as web log mining, computational biology, speech recognition, nat-
ural language processing, robotics, and fault diagnosis. However,
Markov models are extremely limited as a representation language,
because their notion of state lacks the structure that exists in any
real-world domain. A first-order Markov model contains a single
variable, the state, and specifies the probability of each state and
of transiting from one state to another. Hidden Markov models
(HMMs) contain two variables: the (hidden) state and the observa-
tion. In addition to the transition probabilities, HMMs specify the
probability of making each observation in each state. Because the
number of parameters of a first-order Markov model is quadratic in
the number of states (and higher for higher-order models), learn-
ing Markov models is feasible only in relatively small state spaces.
This requirement makes them unsuitable for many data mining ap-
plications, which are concerned with very large state spaces.

Dynamic Bayesian networks (DBNs) generalize Markov mod-
els by allowing states to have internal structure [28]. In a DBN, a
state is represented by a set of variables, which can depend on each
other and on variables in previous states. If the dependency struc-
ture is sufficiently sparse, it is possible to successfully learn and

DRAFT Submitted to KDD2002.

reason about much larger state spaces than using Markov models.
However, DBNs are still quite limited, because they assume that
all states are described by the same variables with the same depen-
dencies. In many applications, states naturally fall into different
classes, each described by a different set of variables. For example,
a web site can be viewed as a state space where each page is a state
and each hyperlink is a possible transition. Classes of pages for
an e-commerce site include: product descriptions, shopping carts,
main gateway,etc.Variables associated with a product description
page might be the product-id, the price, the quantity on hand,etc.
Variables associated with a shopping cart list include the customer’s
name, the shopping cart ID, any relevant coupons,etc.These vari-
ables can help predict a user’s navigational patterns, but it clearly
would make no sense to associate a price with the site’s gateway
page or a credit card number with a product description page.

Examples of multiple state classes from other areas include:

Computational biology. Components of metabolic pathways, re-
gions of DNA, protein structures,etc.

Process control.Stages of a manufacturing process, machine types,
intermediate products,etc.

Speech and language processing.Parts of speech (e.g., only verbs
have tense), semantic contexts (e.g., asking about flights ver-
sus asking about hotels), types of discourse,etc.

Mobile robotics. Types of location (e.g., indoors/outdoors, offices,
laboratories, bedrooms,etc.).

Fault diagnosis. Fault states associated with different subsystems,
each with a different set of sensor readings,etc.

This paper proposesrelational Markov models (RMMs), a gen-
eralization of Markov models that allows states to be of different
types, with a different set of variables associated with each type.
In an RMM, a set of similar states is represented by a predicate or
relation, with the state’s variables corresponding to the arguments
of the predicate. The domain of each argument can in turn have
a hierarchical structure, over which shrinkage is carried out [18].
RMMs compute the probability of a transition as a function of the
source and destination predicates and their arguments. RMMs are
an example of a first-order probabilistic representation, combining
elements of probability and first-order logic. Other representations
of this type include probabilistic relational models [10], probabilis-
tic logic programs [20] and stochastic logic programs [19].

We expect RMMs to be particularly useful in applications that
combine low-level and high-level information, such as plan recog-
nition from low-level actions, or speech recognition aided by nat-
ural language processing. An example of the former is inferring

iMac_instock.html

m505_backorder.html

. . .

main.html

dimension4100_instock.html

checkout.html

Figure 1: Propositional Markov model for an e-commerce site.
Each box is a PMM state, representing a page in the site. Arrows
indicate possible transitions in the PMM, and correspond to hyper-
links in the site.

information-seeking goals of web site users from the sequence of
links they follow. Doing this inference makes it possible to au-
tomatically adapt web sites for different users, and as a result, to
minimize users’ effort in reaching their goals. RMMs are able to
predict user behavior even in web sites (or parts thereof) that the
user has never visited before, and are thus potentially much more
broadly useful than previous approaches to web log mining, includ-
ing traditional Markov models. In this paper we:

• Precisely describe relational Markov models and how they
extend traditional Markov models;

• Apply RMMs to predict web navigation patterns;

• Empirically compare a variety of RMMs with traditional
Markov models, demonstrating that RMMs predict users’ ac-
tions more accurately.

The next section describes representation, inference and learning
in RMMs. The following sections describes their application to
adaptive web navigation, and the experimental results obtained. We
conclude with a discussion of related and future work.

2. RELATIONAL MARKOV MODELS
Consider a discrete system that evolves by randomly moving

from one state to another at each time step. Afirst-order Markov
model is a model of such a system that assumes the probability
distribution over the next state only depends on the current state
(and not on previous ones). LetSt be the system’s state at time
stept. Formally, a first-order Markov model is a triple(Q,A, π),
where: Q = {q1, q2, . . . , qn} is a set of states;A is the transi-
tion probability matrix, whereaij = P (St = qj | St−1 = qi) is
the probability of transiting from stateqi to stateqj , assumed the
same for allt > 0; andπ is the initial probability vector, where
πi = P (S0 = qi) is the probability that the initial state isqi.
Given a first-order Markov model, the probability of observing a se-
quence of states(s0, s1, . . . , sT) is P (S0 =s0, S1 =s1, . . . , ST =

sT) = P (S0 = s0)
∏T
t=1 P (St = st | St−1 = st−1). Given a

set of observed sequences, the maximum-likelihood estimate of an
initial probability πi is the fraction of sequences that start in state
qi, and the maximum-likelihood estimate of a transition probabil-
ity aij is the fraction of times the system transits fromqi to qj . In
annth order Markov model, the probability of transiting to a given
state depends on then previous states, and the transition matrix is
(n + 1)th-dimensional. We refer to Markov models of any order
defined in this way aspropositional Markov models (PMMs).

Relational Markov models (RMMs) are obtained from the propo-
sitional variety by imposing a relational structure on the set of
states. For example, consider a Markov model of an e-commerce

iMac_instock.html

m505_backorder.html

checkout.html

. . .

main.html

dimension4100_instock.html

MainEntryPage() CheckoutPage()ProductPage(Product, StockLevel)

Figure 2: Corresponding relational Markov model. Each
shaded box is a page/state, and states are are grouped (in rounded-
corner boxes) by their relations.

Web site, in which each page is a state. A PMM would have a
unique “proposition” for each page/state: for the main entry page,
for each product description page, for the checkout page,etc.(see
Figure 1). In a PMM each state is an atomic entity, and there is no
notion of similarity between states. In contrast, an RMM groups
similar pages intorelations, with each relation described by its own
set of variables (see Figure 2). For example, one relation might
be “product description page,” with a variable “product” represent-
ing the product the page describes, and “stocklevel” representing
whether the product is in stock or on back order. Additionally,
these variables themselves are grouped together, forming a hierar-
chy of values; Figure 3 shows such a hierarchy for products at an
e-commerce site. A state instance is thus uniquely described as a
tuple in a relation instantiated with leaf values from each variable’s
domain hierarchy. For example,ProductPage(iMac, in stock)
would represent the page describing an iMac computer that is cur-
rently in stock at the site’s warehouse. Moreover, a tuple using
non-leaf values is possible and corresponds to anabstraction– a
distinguished set of states that are similar to each other. RMMs
leverage these state abstractions for much richer learning and in-
ference than PMMs, and make useful prediction possible in very
large state spaces, where many (or most) of the states are never ob-
served in the training data. In this paper, we focus on first-order
RMMs, but our treatment is readily generalizable to RMMs of any
order.1 The next subsections describe representation, learning, and
inference in first-order RMMs.

2.1 Representation
Formally, an RMM is a five-tuple〈D,R, Q,A, π〉. D is a set

of domains, where each domain,D ∈ D, is a tree representing an
abstraction hierarchy of values. The leaves ofD specify a set of
ground values.R is a set of relations, such that each argument of
each relation takes values from the nodes of a single domain inD.
Q is a set of states, each of which is a ground instance of one of the
relations inR, i.e., where each argument is instantiated with leaves
of the corresponding domain.A (the transition probability matrix)
andπ (the initial probability vector) are the same as in a PMM.

To continue our simplified e-commerce example, suppose thatD
contains abstraction hierarchy trees forProducts andStockLevels
as shown in Figure 3. R is the set {MainEntryPage(),
ProductPage(Product,StockLevel) CheckoutPage()}, where
ProductPage(Product,StockLevel) specifies that the arguments

1“First-order” is sometimes used in the literature to mean the
same as “relational” or “predicate-level,” in opposition to “propo-
sitional.” In this paper we use it in the Markov sense, to denote the
assumption that future states are independent of past states given
the present state.

AllStockLevels

backorderin_stock

StockLevel

...

AllDesktops

......

AllPDAs

...

... ...

... m505 ... iPaq3765... ... dimension4100... ... iMac... ...

DellDesktops AppleDesktopsCompaqPDAsPalmPDAs

AllComputers

AllProducts
Product

Figure 3: Abstraction hierarchy of products. Leaves in the tree
represent ground values, while internal nodes denote categories of
related values.

MainEntryPage()

MainEntryPage()

. . .

Product(AllProducts, in_stock)

ProductPage(AllProducts, AllStocklevels)

ProductPage(AllProducts, backorder)

ProductPage(dimension4100, in_stock)

ProductPage(iMac, in_stock)

CheckoutPage()

ProductPage(m505, backorder)

CheckoutPage()

Figure 4: State abstractions for the relational Markov model.
The hierarchy of Figure 3 defines abstractions over the RMM of
Figure 2; the abstractions are depicted as rounded-corner boxes,
labeled with their relations and arguments, and surrounding their
ground states.

of the ProductPage relation must come from theProduct and
StockLevel domains respectively.Q has several states, one of
which isProductPage(m505, backorder).

We now show how to use the relations and domain abstraction
hierarchies to define sets of states as abstractions overQ. These ab-
stractions are distinguished sets of states whose members are sim-
ilar to each other by virtue of their relations and parameter values.
That is, states whose parameter values are in common subtrees of
their respective domains will appear in many abstractions together,
while states with very different parameter values (or belonging to
different relations) will appear together in only the most general
abstractions.

We define these abstraction-sets by instantiating a relation,R,
with interior nodes (instead of just leaf nodes) from the domains
of R’s arguments. More formally, Letnodes(D) denote the nodes
of a domainD. If d is a node in domainD, then letleaves(d)
denote the leaves ofD that are descendants ofd. LetR ∈ R be a
k-ary relation with domainsD1, . . . , Dk. Let d1, . . . , dk be nodes
in the corresponding domains. We define thestate abstraction cor-
responding toR(d1, . . . , dk) be the following subset ofQ.

{R(δ1, . . . , δk) ∈ Q | δi ∈ leaves(di), ∀i, 1 ≤ i ≤ k}

For example, given the domain trees shown earlier, Fig-
ure 4 shows all the abstractions for the e-commerce RMM.
Note that the abstractionProductPage(AllProducts,in Stock) is

Product(AllProducts, in_stock)

Product(AllProducts, AllStockLevels)

Product(AllDesktops, AllStockLevels)

Product(AppleDesktops, AllStockLevels)Product(AllDesktops, in_stock)

Product(AppleDesktops, in_stock) Product(iMac, AllStockLevels)

Product(iMac, in_stock)

Product(AllComputers, in_stock)

Product(AllComputers, AllStockLevels)

Figure 5: A lattice of abstractions. Boxes represent abstrac-
tions and arrows point in the direction of more general abstractions.
These particular abstractions form the lattice for the ground state
Product(iMac, in stock).

the set of two ground states:{ProductPage(iMac,in Stock),
ProductPage(dimension4100,in Stock) }.

Given a particular state inq ∈ Q, it is especially interesting to
know all of the abstractions to whichq is a member. Without loss of
generality, suppose thatq = R(δ1, . . . , δk) and the domains ofR’s
arguments areD1, . . . , Dk, then we define theset of abstractions
of q, writtenA(q), as the following subset of the powerset ofQ:

{R(d1, . . . , dk) ⊆ Q | di ∈ nodes(Di) ∧ δi ∈ leaves(di),

∀i, 1 ≤ i ≤ k}

For unary relations there is a total order onA(q), from the most
specific ({q}) to the most general (Q). For n-ary relations, there
is a partial order onA(q) (i.e., A(q) forms a lattice of abstrac-
tions). For example, the abstractions ofProduct(iMac, in stock)
are shown in Figure 5 where arrows point in the direction of gen-
erality. Finally, therank of an abstractionα = R(d1, . . . , dk) is
defined as1+

∑k
1 depth(dk), wheredepth() is defined as the depth

of a node in a tree. The rank ofQ (the most-general abstraction) is
defined to be zero, and ranks increase as abstractions become more
specific.

In the case of finite domains, RMMs are no more expressive than
PMMs; given an RMM, an equivalent PMM can be obtained sim-
ply by creating a proposition for each tuple inQ. The advantage
of RMMs lies in the additional support for learning and inference
that the relational structure provides, as described in the next sub-
section.

2.2 Learning and Inference
In PMMs, the only possible learning consists of estimating the

transition probabilitiesaij and initial probabilitiesπi, and these
estimates can be done reliably only for states that occur frequently
in the training data. In many cases (e.g., when modeling a user
of a large Web site), most states are not observed in the training
data, but it is still possible to generalize usefully from the observed
behavior to unseen states. RMMs provide a formal framework for
doing this generalization.

For each possible state abstractionα, we can define the corre-
sponding initial probabilityπα as the probability that the initial
state is an element ofα: πα =

∑
qi∈α πi. Similarly, for each pair

of state abstractions(α, β) we can define the corresponding tran-
sition probabilityaα,β as the probability of transiting from a state

in α to any state inβ: aα,β =
∑
qi∈α P (qi|α)

∑
qj∈β aij , where

P (qi|α) is the probability that the current state isqi given that the
current state is a member ofα. The abstraction transition probabil-
itiesaα,β can be estimated directly from the training data by count-
ing. By making suitable simplifying assumptions, they can then be
used to estimate the probabilities of transitions that are absent from
the data. For example, if we assume that the destination stateqd is
independent of the source stateqs given the destination abstraction
β, thenasd = aα,βP (qd|β), whereα is the source abstraction.
P (qd|β) can be estimated as uniform:P (qd|β) = 1/|β|, where
|β| is the number of states in abstractionβ. To make maximum use
of all the available information, we propose to use amixture model
for each transition probability:

asd = P (St=qd | St−1 =qs)

=
∑

α∈A(qs)

∑
β∈A(qd)

λα,βaα,βP (qd|β) (1)

where the sum is over all abstractions of the source and destina-
tion states, and theλα,β ’s are themixing coefficientsand sum to
1. The generative model implicit in Equation 1 is that, to gener-
ate a transition, we first choose apair of abstraction levels(α, β)
with probabilityλα,β , and then move to destination stateqd with
probabilityaα,βP (qd|β). Effectively, this model performsshrink-
agebetween the estimates at all levels of abstraction. Shrinkage is
a statistical technique for reducing the variance of an estimate by
averaging it with estimates for larger populations that include the
target one [18]. For example, a forecast of the number of Apple
iMacs sold at a given store can be shrunk toward a more reliable
forecast for this quantity at all stores in the same city of interest.
Equation 1 applies shrinkage across an entire abstraction lattice,
rather than over a single abstraction path (as is more usual). The
mixing coefficientsλα,β can be estimated in a number of ways:

• RMM-uniform : Uniformly (i.e., all λα,β ’s are equal). This
approach has the advantage of being extremely fast, but may
lead to poor results.

• RMM-EM : Using the EM algorithm, as described in Mc-
Callumet al.[18]. In preliminary evaluation this option per-
formed poorly, due to insufficient training data, so we did not
evaluate it further.

• RMM-rank : Using a heuristic scheme. In particular, we
experimented with the following method:

λαβ ∝
[nαβ
k

]Rank(α)+Rank(β)

(2)

wherenαβ is the number of times that a transition from a
state inα to a state inβ could have occurred in the data (i.e.,
the number of visits to a stateqi ∈ α to which a transition
to a stateqj ∈ β is possible),k is a design parameter, and
the proportionality constant is derived from the requirement
that theλαβ ’s sum to 1. This approach has two desirable
properties: (1) abstractions with very little data have very low
weight; and (2) as the training set size grows, increasingly
specific abstractions will tend to dominate, with the RMM
reducing to a PMM in the infinite-data limit. The choice ofk
controls how much data must be seen at a given abstraction
level before that level can have a significant weight; when
nαβ < k, λαβ ≈ 0. In experiments with validation data, we
have found that settingk = 10 works well in practice.

The number of terms in Equation 1 increases exponentially with
the arity of the source and destination relations. Thus, when these
arities are large, and/or when the abstraction hierarchies are deep,
it may not be practical to compute all the terms in Equation 1. In-
stead, we can select the more informative ones, and set the mixture
weights on the rest to zero (thus ignoring them). An efficient way
of doing this culling is to learn a decision tree with the destination
abstraction as the class, and the arguments of the source relation
as the attributes. More precisely, we learn aprobability estimation
treeor PET [25], because the goal is to estimate the probability of
each destination abstraction, rather than simply predicting the most
likely destination. Thus, in our experiments we evaluate a third
RMM-variant:

• RMM-PET : Any set of abstractions that form a partition of
the destination states can in principle be used as the class. In
this paper, we consider only the highest level of abstraction
– the relationRd ∈ R of the destination state. We learn a
PET for each source relation separately, and use as candidate
attributes the value of each argument of the source relation at
each level of their respective domain hierarchies. (Thus, ak-
ary relation each of whose arguments hasn abstraction levels
yieldskn attributes.) When performing inference for a given
source state, we consider the path the state goes down in the
PET (or, in the general case, the set of paths in all applicable
PETs). Each node in the path has an associated probability
distribution over destination abstractions, and corresponds to
a set ofaαβ terms in Equation 1 (one for each abstraction that
the PET predicts). The terms from all nodes along the path
(or, more generally, along the multiple paths) are combined
according to Equation 1, with the shrinkage coefficients com-
puted as described above.

In practice, in large state spaces it is often the case that only a
fraction of the states are directly reachable from a given state. For
example, on a Web site only the pages that the current page links
to are directly reachable from it. In this case, theP (qd|β) terms
in Equation 1 can be replaced by terms that also condition on the
knowledge of the set of statesC(s) that are directly reachable from
qs. For states that are not reachable fromqs, P (qd|β, C(s)) = 0.
For states that are reachable fromqs, under the previous assumption
of uniform probability,P (qd|β, C(s)) = 1/|C(s)|.

Notice that, in principle, any machine learning method could be
used to predict the destination state as a function of properties of
the source state. The approach proposed here implicitly encodes the
learning bias that the abstraction hierarchies over the relation argu-
ments are useful for generalization (i.e., two states whose values are
closer in their respective hierarchies are more likely to transition to
the same state than states that are far apart).

2.3 Complexity
We close this section by observing that the complexity of RMM

learning and inference is reasonable. Clearly, there is some per-
formance penalty compared to PMMs; RMMs perform shrinkage
among many estimates whereas PMMs rely on a single value. For-
tunately, the added computation increases only with the number of
abstractions that apply to each state, and this number relates only
to the depth of the domain hierarchies. The computation of a sin-
gle asd requires|A(qs) × A(qd)| estimates, compared to a single
estimate for PMMs. However, an approach such as RMM-PET can
greatly reduce this number by identifying the few estimates that are
most informative. The complexity of RMM learning and inference
does not increase with the size of the state space or the amount of
training input. As with PMMs, building the internal representation

of the model and counting the number of visits to each state each
scale linearly with their respective input.

3. ADAPTIVE WEB NAVIGATION
On work on RMMs is motivated by the desire to automatically

personalize websites based on a person’s browsing pattern. Al-
though individuals vary in their web navigation patterns, most web
sites have a static organization that is designed for general use. In
previous work we proposed the PROTEUSarchitecture for automat-
ically personalizing web sites for individual visitors [3]. Adapta-
tion in PROTEUS follows a two-step approach. First, PROTEUS

mines web server logs to build models of users. Second, as users
request pages at the site, PROTEUSconsiders all the ways in which
to adapt the site (e.g., add a link between two pages, rearrange
list items on a page, elide content from a long page,etc.) and se-
lects the adaptations that yield the greatest expected utility per the
model mined in step one. PROTEUSemploys heuristics and a strong
bias to ensure that this search is efficient. In a study of a dozen
users with a wireless web browser, PROTEUSreduced the time and
navigational effort required for users to find information on small-
screen, low-bandwidth devices.

In the PROTEUSframework, we found adding shortcut links to be
particularly useful. A shortcut link connects two previously “dis-
tant” pages in the site, where distance is measured as the number
of intermediate pages. For example, if a site contains the pages A,
B, and C and the links A→B and B→C, then the shortcut A→C
would shorten the path from A to C by one link. Concentrating on
the shortcut creation problem, we developed the MINPATH algo-
rithm [2], which composes many page transition predictions to pre-
dict the expected savings every possible shortcut in the site would
offer. We experimented with mixtures of propositional Markov
models, including first- and second-order models, and found that
a mixture of first-order Markov models faired the best, saving visi-
tors up to 40% of their navigation effort.

M INPATH ’s performance is limited by the quality of the underly-
ing page navigation model, and, as we have mentioned earlier, first-
order PMMs have a number of weaknesses. The most significant is
that PMMs cannot offer informed guidance at pages for which there
is no training data. If a web page did not exist during the training
period (or simply wasn’t visited), the Markov model can do no bet-
ter than predict a uniform distribution over the out-adjacent pages.
This phenomenon is very common on large dynamically-generated
web sites: on a portal site the news stories change every day; cus-
tomers at an e-commerce site typically view product descriptions
they haven’t previously read; and after a semester is over, students
begin viewing the course pages for a different set of courses. In-
stead, ideally, we would like the model to take advantage of the
relation between pages. For example, customers prefer news sto-
ries of a particular genre and products of similar types. If a student
views numerous homework pages for a particular course in a given
department, then the visitor is likely to continue preferring home-
work pages, pages for that course, and courses in that major.

Fortunately, as we demonstrate in the next section, RMMs ad-
dress the concern of sparse training data in large sites, by making
use of a relational model of the web site identifying semantic cor-
respondence between pages, both previously visited and unseen.
The relational model is frequently already available, in the form of
a database data model or other conceptual model that the human
web site designer developed and maintains with the site content.
In our evaluation we measure the predictive accuracy of RMMs for
page navigation; in future work we will incorporate RMMs into our
M INPATH implementation and PROTEUSsystem.

4. EMPIRICAL EVALUATION
In this section, we address the following questions: (1) Is our

hypothesis correct that RMMs outperform propositional Markov
models when data is sparse? (2) In data-rich environments when
PMMs perform well, are RMMs at a disadvantage? (3) Are RMMs
competitive in terms of CPU time required for learning? (4) Which
of the RMM-variants (uniform, rank, or PET) performs best?

To answer these questions we selected three sets of log data taken
from two real web sites,www.gazelle.com (the e-commerce
site introduced in the KDDCup 2000 [15]) and the instructional
pages from our home institutionwww.cs.washington.edu/
education/courses/ . At both sites, we explicitly modeled
when users ended a browsing trail, by creating a distinguished
STOP page that was linked from every page in the site and which
users implicitly visited at the end of a trail. We represented each
page in the site as a state and the input to the models were the
links users followed during the training period. The experimental
task is to predict the probability a user will follow each link given
the user’s current page. The KDDCup data has the advantage that
it represents the large class of sites dynamically-generated from
database queries and page templates, but was not ideal because
some domain modeling questions could not be answered without
the “live” site. Our home institution’s site was useful because it is
operational and we have substantial amounts of data available for
mining.

For both sites we collected clickstream data and the list of links
on each page. Determining hyperlink connectivity was easy at our
home institution — we crawled the site and parsed linkage data to
create the model. However, although we had log data forwww.
gazelle.com , the site was no longer operational. Hence, we
were forced to generate an approximate linkage model composed
of the subset of links that were actually followed in the log data.
While this solution is suboptimal (even if a link was never followed,
its presence may have influenced the behavior of visitors), the alter-
native (attempting to randomly add spurious but untravelled links
to each page) seemed questionable.

Generating good relational structure at each site was straight-
forward. At our home institution, for example, our model in-
cludesCourseOccurrence(Course, Term) pages for the main
page of each term’s offering of a course,Assignment(Course,
Term, Assignment) pages for each problem set assigned,etc.Con-
tent onwww.gazelle.com , like at many large web sites, was
generated dynamically by combining queries over a database with
HTML templates to produce pages. The challenge, however, was
in inferring the schemata of pages – the set of allowable templates
and the parameters that they each required – without having ac-
cess to the live web site. Fortunately, the KDDCup log data en-
codes a comprehensive set of parameters as part of each request,
and most of these parameters have an obvious intuitive meaning
(page template, product identifiers,etc.). We removed records for
all but the nine most frequently accessed page templates and for
templates whose arguments are not present in the clickstream data
(e.g., search results pages); this set of nine templates was our initial
candidate for the relation setR. The next challenge was determin-
ing the arguments to each relation. By analyzing the frequency of
non-null parameter values, it became clear that some of the tem-
plates took optional arguments. Because our framework requires
relations to have constant arity, we “split” such a relation into two
or more relations, one for each non-null argument pattern. This
process yielded 16 distinct relations inR. Finally, for the hierar-
chies over the parameter values, we used the trees defined for those
parameters in the KDDCup data. Appendix A provides the detailed
relational models for both sites.

Predictive performance for www.gazelle.com

2.5

3.5

4.5

5.5

6.5

7.5

8.5

10 100 1000 10000 100000 1000000
Number training examples

A
vg

er
ag

e
n

eg
at

iv
e

lo
g

 li
ke

lih
o

o
d

RMM-uniform
RMM-rank
RMM-PET
PMM

Figure 6: KDDCup 2000 data (www.gazelle.com). Thex-
axis shows the number of training instances scaled logarithmically,
and they-axis is the average negative log-likelihood of a testing
example. Curves are based on 2000 testing instances. RMMs out-
perform PMMs with as few as ten training examples.

In the following experiments, we compared PMMs with three
RMM-variants: RMM-uniform, RMM-rank, and RMM-PET. We
employed Laplace smoothing in the PMM and in RMM-PET. For
RMM-rank we set thek parameter at 10.0, a value which had pro-
duced good results on the training data. We compute shrinkage
weights in RMM-PET using EM. For each data set, we trained the
models with varying numbers of examples, and we recorded the
average negative log-likelihood of a testing example. A negative
log-likelihood score is the number of bits needed to encode an av-
erage testing instance given the model; a perfect model would have
a score of zero.

Our first experiment, which uses KDDCup data fromwww.
gazelle.com , shows the substantial advantage that RMMs have
over PMMs (see Figure 6). With only 10 training examples, the
RMMs perform significantly (95% confidence level) better than
PMMs. As the amount of training data increases, all models im-
prove their prediction, but RMM-uniform and RMM-PET consis-
tently outperform the PMM. Note, however, that as the models
are given more training data, their relative differences diminish.
This result is to be expected: with suitable volumes of training
data, RMM-rank and RMM-PET both converge to a PMM. RMM-
uniform’s consistent good performance suggests that all levels of
abstraction in this site are predicting state transitions well. Note,
also, that the computation time required for the RMM-variants is
not substantially more than that for PMMs. The RMM-variants re-
quire some preprocessing of the data, to build the abstraction sets,
but this work can be done at learning time, independent of the test-
ing set. Inference in a PMM for a testing example requires only a
single ratio of counts, while a more complex set of counts must be
shrunk together in the RMM-variants.

Our second experiment uses log data from November 2001 at
our home institution. When trained with successively more data,
RMM-rank and RMM-PET showed a slight improvement over PMMs,
but only when trained on up to 10,000 examples. Because the UW
CSE education pages form a small site, it is a very data-rich en-
vironment, and we were pleased that RMMs were not trumped by
PMMs.

Our final experiment uses data from our home institution; it rep-

Predictive performance for CSE 142

2.5

3.0

3.5

4.0

4.5

5.0

10 100 1000 10000 100000

Number training examples

A
vg

er
ag

e
n

eg
at

iv
e

lo
g

 li
ke

lih
o

o
d

RMM-uniform
RMM-rank
RMM-PET
PMM

Figure 7: Winter 2002 data from UW CSE course 142.Pages
in the testing set (Winter 2002) did not exist during the training
period (Winter 2001 - Fall 2001). RMMs can take advantage of the
conceptually similar states to greatly improve prediction.

State
Distribution

Markov
Model

Bayes
Net

RMM

DPRMPRM

Dynamic
Bayes Net

S
tru

ct
ur

e
Sequence

Relatio
nal

Figure 8: Probabilistic models.

resents traffic to the pages of a single course, CSE 142 “Computer
programming I,” over a full year. Here, we trained the models on
data from the instances of 142 in Winter, Spring, Summer, and Fall,
2001 and tested the models on data from the instance in Winter
2002. Note that the instructors (and course webmasters) were dif-
ferent in the two instances; indeed, none of the testing pages even
existed at the time that the training data was collected. As a result,
the PMM can do nothing better than predict a uniform distribution
over the links on each page. In contrast, an RMM takes advantage
of the related training data (Figure 7).

In summary, we conclude that RMMs significantly outperform
PMMs when data is sparse and perform comparably when data is
rich. Computation time for RMMs is competitive with PMMs, par-
ticularly when the training data can be preprocessed. The RMM-
PET technique appears to be the best way to compute the mixing
coefficients, with RMM-rank also performing favorably.

5. RELATED WORK
There are two families of related work that we discuss in turn:

techniques for learning probabilistic models, and algorithms for
web adaptation and personalization.

5.1 Learning Probabilistic Models
Considerable work has been performed on a variety of different

probabilistic models; we illustrate this space in Figure 8. The lower
left corner represents a simple model containing a number of states
of varying probability. Moving rightward addssequenceinforma-
tion and leads to a Markov model. Moving upwards addsstructure
by which we mean the notion of defining the states in terms of vari-
ables and representing the joint probability distribution compactly
with explicit conditional independence assumptions. Moving back-
wards into the page addsrelational information — a set of predi-
cates and a domain of variables for each argument.

Viewed in this context, the connection between RMMs and other
first-order probabilistic representations becomes more clear. Fried-
manet al.[10] extended the notion of Bayesian network to propose
probabilistic relational models (PRMs). Objects in a PRM are di-
vided into a set of classes, and a different probabilistic model is
built for each class, specifying how its attributes depend on each
other and on attributes of related classes. Dynamic Bayesian net-
works (DBNs) [6, 7] form a causal dependency graph for uncertain
temporal reasoning. A DBN has a separate Bayesian network for
each time step, in which the values of variables for timet can de-
pend on the values of variables int−1. Thus, DBNs “improve” on
RMMs in their use of explicit conditional independence amongst a
set of variables, but in contrast to an RMM every state in a DBN
is treated the same way — it has the same variables and dependen-
cies. To our knowledge, RMMs are the first probabilistic first-order
model of sequential processes to be proposed. However, it is inter-
esting to note that dynamic Bayesian networks can be viewed as a
special form of PRM where there is only one class (the state) and
the only relation is the sequential order between successive states.)
PRMs have been extended to allow the class to be chosen from a
hierarchy [12]. RMMs allow hierarchies over the attributes in each
class, and combining models at all levels using shrinkage. This ap-
proach should be useful in PRMs also. One obvious area for future
work is to combine ideas from RMMs, DBNs, and PRMs to define
“Dynamic probabilistic relational models” (DPRMs).

Hidden Markov models have been extend in a number of ways to
accommodate richer state and observation information. For exam-
ple, factorial Markov models [13] decompose model states intok
non-interacting components, described byk state variable. A fac-
torial Markov model can be viewed as a special case of an RMM,
in which all states belong to the samek-ary relation, but which
has a conditional independence assumption that variables in sub-
sequent states depend only on the corresponding variables in the
previous state. An area of future work is in exploring how these
conditional independencies can be leveraged by relational Markov
models. Other extenions of HMMs have been proposed (e.g., Laf-
ferty et al. [16]), and it should be possible to subsume these within
our framework, but we leave this matter for future research. RMMs
are also related to work on abstraction in reinforcement learning
(e.g., Dietterich [8], Dzeroskiet al. [9]), and may be useful in that
field.

5.2 Adaptive Web Navigation
Since Perkowitz and Etzioni challenged the research community

to build adaptive web sites [23], many projects have addressed com-
ponents of this task. In this section we highlight the subset of work
related specifically to adaptive web navigation.

Our MINPATH system [2] processes server access logs offline
in order to learn a model of web navigation patterns (similar to
how WebCANVAS [4] builds visitor clusters for visualization). At
run-time MINPATH combines the probabilistic estimates from this
model with distance information to computeexpected savingsof

shortcuts, adding the links it deems most useful. In our earlier
work, we evaluated a variety of visitor models, including Naı̈ve
Bayes mixture models and mixtures of Markov models, conclud-
ing that a mixture of Markov models performed best for the task.
In this paper, we argue that RMMs can perform substantially better
for this same task.

Perkowitz and Etzioni [24] also address the shortcut problem,
but they use a simpler prediction method: for each pair of pages
P,Q on the site, their system records how oftenQ is viewed by
following some chain of links viaP . When pageP is requested
after these statistics have been computed, the system adds the top
mmost-requestedQ pages as shortcuts. This method doesn’t make
the independence assumptions of a first-order Markov model, but
probably requires more user data in order to make predictions. Like
the traditional Markov approaches, Perkowitz and Etzioni’s system
can’t predict good shortcuts for pages which weren’t visited in the
training data.

In addition to their work on the shortcut problem, Perkowitz and
Etzioni developed IndexFinder [24], which uses page meta-data
to cluster web pages into conceptually similar groups, and subse-
quently builds coherent index or hub pages of links. The meta-data
is similar in spirit to the values used to instantiate RMM relations,
although IndexFinder does not segregate pages into relations, or
predict navigation.

Fu et al.’s SurfLen [11] mines web logs for association rules,
suggesting the topm pages that are most likely to co-occur with the
visitor’s current session; the learning method is a form of “market
basket” analysis [1].

Lieberman’s Letizia [17] is a client-side agent that browses the
web in tandem with the user. Based on the user’s actions (e.g.,
which links were followed, whether pages were added to a book-
marks file,etc.), Letizia estimates the visitor’s interest in as-yet-
unseen pages. Information retrieval measures of page similarity
and guiding queries have been quite successful at predicting navi-
gation patterns. WebWatcher [14] and adaptive web site agents [22]
use machine learning to predict the next link a user will follow —
a simplified version of the shortcut problem. Sarukkai [27] uses
a Markov model of web usage to suggest the most probable links
a visitor may follow, and notes the need to reduce the size of the
model by clustering the URLs. Space precludes discussion of all
related work on sequence prediction and web usage mining.

The goal of the WebKB project [5] is to populate a relational
knowledge base given the textual content and hyperlink connec-
tivity of Web pages. This goal is different from that of RMMs
— RMMs presume the existence of a relational model and predict
transitions using the model. However, it would be interesting to
apply the WebKB learning approach to populate a modeldescrib-
ing a web siteand use RMMs to predict navigation in that model.
Although most e-commerce sites are dynamically generated from
database queries, many other large sites (e.g., corporate intranets
or academic institution web sites) exist only as large collections of
static web pages. The WebKB approach could prove fruitful for
producing the relational information RMMs need for such static
sites.

Finally, much research has been done in recent years on classi-
fying web pages (e.g., Pazzaniet al. [21], McCallum,et al. [18]).
Any web page classifier that yields class probabilities can in prin-
ciple be used in place of RMMs for adaptive web navigation. How-
ever, many of these classifiers are based on viewing web pages as
bags of words, and are unable to take advantage of the relational
structure of the site. Incorporating bag-of-words information into
RMMs may be useful and is a direction for future work.

6. CONCLUSIONS
This paper introduces relational Markov models (RMMs), a gen-

eralization of Markov models that represent states with first-order
relational predicates and leverage this information to make better
inference. We believe that RMMs are widely applicable to numer-
ous domains such as mobile robotics, speech processing, process
control, diagnosis, and computational biology. This paper makes
the following contributions:

• We provide a precise definition of relational Markov models
and describe how to estimate state transition behavior using
shrinkage between abstractions of the states.

• We explain how RMMs can be used for adaptive web nav-
igation, and present experiments demonstrating substantial
advantages over traditional Markov models.

• We compare several variations of RMMs and found that us-
ing PETs to select mixture weights preformed the best, fol-
lowed by our RMM-rank approach.

Our experiments have shown that relational Markov models are
a suitable alternative to traditional Markov models – RMMs infre-
quently perform much worse, and can perform much better. When
data about all states is available in quantity, or if the relations be-
tween states are not reflected in the distribution of the data, then
RMMs offer no advantage to traditional Markov models. However,
when data is scarce or non-existent about some states, but abun-
dant for conceptually similar states (based on relational abstrac-
tions of the states), relational Markov models significantly outper-
form traditional Markov models. Intuition suggests that this latter
case holds true for the vast majority of web sites, and that RMMs
should prove widely useful.

In future research we plan to both extend relational Markov mod-
els and explore additional applications. An immediate area to pur-
sue is in further developing the RMM-PET approach, by building
PETs to predict finer partitions among the destination abstractions.
An interesting evolution of RMMs is to relational hidden Markov
models, where both the states and the observations are described
by typed relations and shrinkage is carried out over their respec-
tive abstractions. Another direction is incorporating a model clus-
ter identity into the transition probability, such as the identity of a
cluster of visitors at a web site, and shrinking between many mod-
els learned for different sizes and scope of user cluster (such as a
single user, a cluster of similar users, and the set of all users at the
site). A third path of research is to apply RMMs to other domains,
such as mobile robot localization or speech recognition.

Acknowledgments
The authors thank Cathy Anderson, An Hai Doan, Oren Etzioni,
Geoff Hulten, Zack Ives, Cody Kwok for their insightful comments
on this work, and to Blue Martini for providing e-commerce click-
stream data. This work was funded in part by NSF grants #IIS-
9872128 and #IIS-9874759, an NSF CAREER and IBM Faculty
award to the second author, and a gift from the Ford Motor Com-
pany.

7. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

Association Rules between Sets of Items in Large Databases.
In Proceedings of ACM SIGMOD Conference on
Management of Data, pages 207–216, 1993.

[2] C. R. Anderson, P. Domingos, and D. S. Weld. Adaptive web
navigation for wireless devices. InProceedings of the
Seventeenth International Joint Conference on Artificial
Intelligence, 2001.

[3] C. R. Anderson, P. Domingos, and D. S. Weld. Personalizing
web sites for mobile users. InProceedings of the Tenth
International World Wide Web Conference, 2001.

[4] I. V. Cadez, D. Heckerman, C. Meek, P. Smyth, and
S. White. Visualization of navigation patterns on a web site
using model based clustering. InProceedings of the Sixth
International Conference on Knowledge Discovery and Data
Mining, 2000.

[5] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. Learning to construct
knowledge bases from the World Wide Web.Artificial
Intelligence Journal, 118(1–2):69–113, 2000.

[6] T. Dean and K. Kanazawa. Probabilistic Temporal
Reasoning. InProceedings of the Seventh National
Conference on Artificial Intelligence, 1988.

[7] T. Dean and K. Kanazawa. A model for reasoning about
persistence and causation.Computational Intelligence,
5:142–150, 1989.

[8] T. G. Dietterich. State abstraction in MAXQ hierarchical
reinforcement learning. In S. A. Solla, T. K. Leen, and K.-R.
Muller, editors,Advances in Neural Information Processing
Systems 12, pages 994–1000. MIT Press, Cambridge, MA,
2000.

[9] S. Dzeroski and L. de Raedt. Relational reinforcement
learning. InProceedings of the Fifteenth International
Conference on Machine Learning, pages 136–143, Madison,
WI, 1998. Morgan Kaufmann.

[10] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning
probabilistic relational models. InProceedings of the
Sixteenth International Joint Conference on Artificial
Intelligence, pages 1300–1307, Stockholm, Sweden, 1999.
Morgan Kaufmann.

[11] X. Fu, J. Budzik, and K. J. Hammond. Mining navigation
history for recommendation. InProceedings of the 2000
Conference on Intelligent User Interfaces, 2000.

[12] L. Getoor, D. Koller, and N. Friedman. From instances to
classes in probabilistic relational models. InProceedings of
the ICML-2000 Workshop on Attribute-Value and Relational
Learning, Stanford, CA, 2000.

[13] Z. Ghahramani and M. Jordan. Factorial hidden Markov
models.Machine Learning Journal, 29:245–273, 1997.

[14] T. Joachims, D. Freitag, and T. Mitchell. WebWatcher: A
tour guide for the World Wide Web. InProceedings of the
Fifteenth International Joint Conference on Artificial
Intelligence, 1997.

[15] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng.
KDD-Cup 2000 organizers’ report: Peeling the onion.
SIGKDD Explorations, 2(2):86–98, 2000.
http://www.ecn.purdue.edu/KDDCUP.

[16] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling data. InProceedings of the Eighteenth International
Conference on Machine Learning, pages 282–289,
Williamstown, MA, 2001. Morgan Kaufmann.

[17] H. Lieberman. Letizia: An agent that assists web browsing.
In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, 1995.

[18] A. McCallum, R. Rosenfeld, T. Mitchel, and A. Y. Ng.
Improving text classification by shrinkage in a hierarchy of
classes. InProceedings of the Fifteenth International
Conference on Machine Learning, 1998.

[19] S. Muggleton. Stochastic logic programs. In L. de Raedt,
editor,Advances in Inductive Logic Programming, pages
254–264. IOS Press, Amsterdam, The Netherlands, 1996.

[20] L. Ngo and P. Haddawy. Answering queries from
context-sensitive probabilistic knowledge bases.Theoretical
Computer Science, 171:147–177, 1997.

[21] M. Pazzani, J. Muramatsu, and D. Billsus. Syskill & Webert:
Identifying interesting Web sites. InProceedings of the
Thirteenth National Conference on Artificial Intelligence,
1996.

[22] M. J. Pazzani and D. Billsus. Adaptive web site agents. In
Proceedings of the Third International Conference on
Autonomous Agents, 1999.

[23] M. Perkowitz and O. Etzioni. Adaptive web sites: an AI
challenge. InProceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, 1997.

[24] M. Perkowitz and O. Etzioni. Towards adaptive web sites:
Conceptual framework and case study.Artificial Intelligence
Journal, 118(1–2), 2000.

[25] F. Provost and P. Domingos. Well-trained PETs: Improving
probability estimation trees. Technical Report CDER
Working Paper #00-04-IS, Stern School of Business, NYU,
October 2000.

[26] L. R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition.Proceedings of
the IEEE, 77:257–286, 1989.

[27] R. R. Sarukkai. Link prediction and path analysis using
Markov chains. InProceedings of the Ninth International
World Wide Web Conference, 2000.

[28] P. Smyth, D. Heckerman, and M. I. Jordan. Probabilistic
independence networks for hidden Markov probability
models.Neural Computation, 9:227–269, 1997.

APPENDIX
A. RELATIONAL SCHEMATA FOR

EVALUATION SITES

A.1 www.gazelle.com
The relations forwww.gazelle.com take up to three param-

eters:Assortment, Product, andCollection. The domain hierar-
chies for these parameters are described explicitly in the KDDCup
2000 data.

• Home()

• Boutique()

• Departments()

• Legcare vendor()

• Lifestyles()

• Vendor()

• AssortmentDefault()

• Assortment(Assortment)

• ProductDetailLegcareDefault()

• ProductDetailLegcare(Product)

• ProductDetailLegwearDefault()

• ProductDetailLegwearProduct(Product)

• ProductDetailLegwearAssortment(Assortment)

• ProductDetailLegwearProdCollect(Product, Collection)

• ProductDetailLegwearProdAssort(Product, Assortment)

• ProductDetailLegwear(Product, Collection, Assortment)

A.2 www.cs.washington.edu
The structure for www.cs.washington.edu/edu-

cation/courses/ was derived by reverse-engineering the
structure of the existing site. TheTerm and Course domain
hierarchies each contain a root node, a level of interior nodes
(grouping courses by undergraduate, graduate,etc. and grouping
terms by the academic year), and the ground leaf values.URL
variables are URLs relative to the particularCourseSite(Course)
or CourseOccurence(Course, Term) to which they apply. The
domain hierarchies forURL and most other variables are flat,
comprising only of the root node and many leaf values.

• CourseWebs()

• CourseSite(Course)

• CourseSiteOther(Course, URL)

• CourseOccurence(Course, Term)

• CourseOccurenceOther(Course, Term, URL)

• CourseSampleCode(Course, Term, URL)

• Administrivia(Course, Term, URL)

• AllCoursework(Course, Term)

• CourseworkGeneralOther(Course, Term, URL)

• Coursework(Course, Term, Number)

• CourseworkCode(Course, Term, Number)

• CourseworkOther(Course, Term, Number, URL)

• Turnin(Course, Term, Number)

• AllExams(Course, Term)

• Exam(Course, Term, URL)

• AllLectures(Course, Term)

• LectureOtherGeneral(Course, Term, URL)

• Lecture(Course, Term, Number)

• LectureOther(Course, Term, Number, URL)

• MailIndex(Course, Term, SortBy)

• MailMessage(Course, Term, Number)

• Section(Course, Term, Section)

• SectionOther(Course, Term, Section, URL)

