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ABSTRACT reason about much larger state spaces than using Markov models.
However, DBNs are still quite limited, because they assume that
all states are described by the same variables with the same depen-
dencies. In many applications, states naturally fall into different
classes, each described by a different set of variables. For example,
a web site can be viewed as a state space where each page is a state
and each hyperlink is a possible transition. Classes of pages for
an e-commerce site include: product descriptions, shopping carts,
main gatewayetc. Variables associated with a product description

architecture for personalizing web sites. We present experimentspag_e might be t_he product-ld, the_ price, the _quanﬂty on hatd, .
on an e-commerce and an academic web site showing that R,\/”vlsVarlables assoma_ted with a shopping cart list include the custqmers
are substantially more accurate than alternative methods, and maké'ame, the shopping cart ID, any relevant coupetss, These vari-

good predictions even when applied to previously-unvisited parts ables can help predict a user’s pavigatiqnal patterns, 'but it clearly
of the site would make no sense to associate a price with the site’s gateway

page or a credit card number with a product description page.
Examples of multiple state classes from other areas include:

Relational Markov models (RMMs) are a generalization of Markov
models where states can be of different types, with each type de-
scribed by a different set of variables. The domain of each variable
can be hierarchically structured, and shrinkage is carried out over
the cross product of these hierarchies. RMMs make effective learn-
ing possible in domains with very large and heterogeneous state
spaces, given only sparse data. We apply them to modeling the
behavior of web site users, improving prediction in OROPEUS

1. INTRODUCTION

Markov models [26] are widely used to model sequential pro- Computational biology. Components of metabolic pathways, re-
cesses, and have achieved many practical successes in areas such  gions of DNA, protein structuresfc.
as web log mining, computational biology, speech recognition, nat-
ural language processing, robotics, and fault diagnosis. However,
Markov models are extremely limited as a representation language,

because their nc_Jtion of state lacks the structure that_exists_in anySpeech and language processindParts of speecte(g, only verbs

rea_l-world domain. A flrst-or(_h_er Markov mod_e_l contains a single have tense), semantic contexésyf, asking about flights ver-

varlable_, _the state, and specifies the probqblllty of each state and sus asking about hotels), types of discouee,

of transiting from one state to another. Hidden Markov models

(HMMs) contain two variables: the (hidden) state and the observa- Mobile robotics. Types of location€.g, indoors/outdoors, offices,

tion. In addition to the transition probabilities, HMMs specify the laboratories, bedroomsic).

probability of making each observation in each state. Because the

number of parameters of a first-order Markov model is quadratic in Fault diagnosis. Fault states associated with different subsystems,

the number of states (and higher for higher-order models), learn- each with a different set of sensor readings,

ing Markov models is feasible only in relatively small state spaces.

This requirement makes them unsuitable for many data mining ap-  This paper proposeglational Markov models (RMMsh gen-

plications, which are concerned with very large state spaces. eralization of Markov models that allows states to be of different
Dynamic Bayesian networks (DBNs) genera”ze Markov mod- types, with a different set of variables associated with each type.

els by allowing states to have internal structure [28]. In a DBN, a In an RMM, a set of similar states is represented by a predicate or

state is represented by a set of variables, which can depend on eackelation, with the state’s variables corresponding to the arguments

other and on variables in previous states. If the dependency struc-Of the predicate. The domain of each argument can in turn have

ture is sufficiently sparse, it is possible to successfully learn and & hierarchical structure, over which shrinkage is carried out [18].
RMMs compute the probability of a transition as a function of the

source and destination predicates and their arguments. RMMs are
an example of a first-order probabilistic representation, combining
elements of probability and first-order logic. Other representations
of this type include probabilistic relational models [10], probabilis-
tic logic programs [20] and stochastic logic programs [19].

We expect RMMs to be particularly useful in applications that
combine low-level and high-level information, such as plan recog-
nition from low-level actions, or speech recognition aided by nat-

DRAFT Submitted to KDD2002. ural language processing. An example of the former is inferring

Process control. Stages of a manufacturing process, machine types,
intermediate productgtc.
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Figure 1: Propositional Markov model for an e-commerce site.

Each box is a PMM state, representing a page in the site. Arrows

indicate possible transitions in the PMM, and correspond to hyper- Figure 2: Corresponding relational Markov model. Each

links in the site. shaded box is a page/state, and states are are grouped (in rounded-
corner boxes) by their relations.

information-seeking goals of web site users from the sequence of
links they follow. Doing this inference makes it possible to au-
tomatically adapt web sites for different users, and as a result, to
minimize users’ effort in reaching their goals. RMMs are able to
predict user behavior even in web sites (or parts thereof) that the
user has never visited before, and are thus potentially much more
broadly useful than previous approaches to web log mining, includ-
ing traditional Markov models. In this paper we:

Web site, in which each page is a state. A PMM would have a
unique “proposition” for each page/state: for the main entry page,
for each product description page, for the checkout petge(see
Figure 1). In a PMM each state is an atomic entity, and there is no
notion of similarity between states. In contrast, an RMM groups
similar pages inteelations with each relation described by its own
set of variables (see Figure 2). For example, one relation might
be “product description page,” with a variable “product” represent-
ing the product the page describes, and “sttaslel” representing
whether the product is in stock or on back order. Additionally,
e Apply RMMs to predict web navigation patterns; these variables themselves are grouped together, forming a hierar-
chy of values; Figure 3 shows such a hierarchy for products at an
e Empirically compare a variety of RMMs with traditional  e-commerce site. A state instance is thus uniquely described as a
Markov models, demonstrating that RMMs predict users’ ac- tuple in a relation instantiated with leaf values from each variable’s
tions more accurately. domain hierarchy. For exampl®roductPage(iMac, in_stock)
) ) . . would represent the page describing an iMac computer that is cur-
The next section describes representation, inference and Iearmngrenﬂy in stock at the site’s warehouse. Moreover, a tuple using
in RMMs. The following sections describes their application t0 51 jeaf values is possible and corresponds tastraction— a
adaptive web navigation, and the experimental results obtained. Wejstinguished set of states that are similar to each other. RMMs

e Precisely describe relational Markov models and how they
extend traditional Markov models;

conclude with a discussion of related and future work. leverage these state abstractions for much richer learning and in-
ference than PMMs, and make useful prediction possible in very
2. RELATIONAL MARKOV MODELS large state spaces, where many (or most) of the states are never ob-
Consider a discrete system that evolves by randomly moving served in the training data. In this paper, we focus on first-order
from one state to another at each time stepfirét-order Markov RMMs, but our treatment is readily generalizable to RMMs of any

modelis a model of such a system that assumes the probability order* The next subsections describe representation, learning, and
distribution over the next state only depends on the current stateinference in first-order RMMs.

(and not on previous ones). L&t be the system’s state at time .

stept. Formally, a first-order Markov model is a trip(€), A, ), 21 Representatlon

where: Q = {q1,2,...,qn} is @ set of statesi is the transi- Formally, an RMM is a five-tupldD, R, Q, A, 7). D is a set

tion probability matrix wherea;; = P(S; = ¢; | Si—1 = ¢) is of domains, where each domaiP, € D, is a tree representing an
the probability of transiting from staig to stateq,;, assumed the  abstraction hierarchy of values. The leavegbtpecify a set of
same for allt > 0; and~ is theinitial probability vector, where ground valuesR is a set of relations, such that each argument of
m = P(So = g¢;) is the probability that the initial state ig. each relation takes values from the nodes of a single domdmn in
Given afirst-order Markov model, the probability of observing ase- @ is a set of states, each of which is a ground instance of one of the
quence of state&y, s1,. .., s7) is P(So=s0,S1=581,...,57= relations inR, i.e,, where each argument is instantiated with leaves

st) = P(So = s0) HtT—1 P(S; = st | Si—1 = s:—1). Given a of the corresponding domaim (the transition probability matrix)
set of observed sequences, the maximum-likelihood estimate of anand (the initial probability vector) are the same as in a PMM.
initial probability ; is the fraction of sequences that start in state ~ T0 continue our simplified e-commerce example, supposethat
¢:, and the maximum-likelihood estimate of a transition probabil- contains abstraction hierarchy treesRopducts andStockLevels
ity a;; is the fraction of times the system transits frgnto g;. In as shown in Figure 3. R is the set {MainEntryPage(),
annth order Markov model, the probability of transiting to a given ProductPage(Product,StockLevel) CheckoutPage()}, where
state depends on theprevious states, and the transition matrix is ProductPage(Product,StockLevel) specifies that the arguments
(n + 1)th-dimensional. We refer to Markov models of any order l“First-order” is sometimes used in the literature to mean the
deflned.ln this way apropositional Markov models (PMMs) same as “relational” or “predicate-level,” in opposition to “propo-
Relational Markov models (RMMs) are obtained from the propo- - sjtional” In this paper we use it in the Markov sense, to denote the

sitional variety by imposing a relational structure on the set of assumption that future states are independent of past states given
states. For example, consider a Markov model of an e-commercethe present state.
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Figure 3: Abstraction hierarchy of products. Leaves in the tree
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Figure 5: A lattice of abstractions. Boxes represent abstrac-

represent ground values, while internal nodes denote categories Ojons and arrows point in the direction of more general abstractions.

related values.
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Figure 4: State abstractions for the relational Markov model.
The hierarchy of Figure 3 defines abstractions over the RMM of

Figure 2; the abstractions are depicted as rounded-corner boxes,

labeled with their relations and arguments, and surrounding their
ground states.

of the ProductPage relation must come from th€roduct and
StockLevel domains respectively.Q has several states, one of
which isProductPage(m505, backorder).

We now show how to use the relations and domain abstraction
hierarchies to define sets of states as abstractionghvEnese ab-

stractions are distinguished sets of states whose members are sim-

ilar to each other by virtue of their relations and parameter values.

That is, states whose parameter values are in common subtrees o

their respective domains will appear in many abstractions together
while states with very different parameter values (or belonging to
different relations) will appear together in only the most general
abstractions.

We define these abstraction-sets by instantiating a relaion,
with interior nodes (instead of just leaf nodes) from the domains
of R’s arguments. More formally, Letodes(D) denote the nodes
of a domainD. If d is a node in domairD, then letleaves(d)
denote the leaves db that are descendants @f Let R € R be a
k-ary relation with domain®, ..., Dy. Letds, ..., dr be nodes
in the corresponding domains. We define stegte abstraction cor-
responding taR(d1, . . ., di) be the following subset ap.

{R(61,...,6%) € Q| 6; € leaves(d,), Vi, 1 <i <k}

For example, given the domain trees shown earlier, Fig-
ure 4 shows all the abstractions for the e-commerce RMM.
Note that the abstractioRroductPage(AllProducts,in_Stock) is

These particular abstractions form the lattice for the ground state
Product(iMac, in_stock).

the set of two ground states{ProductPage(iMac,in_Stock),
ProductPage(dimension4100,in_Stock) }.

Given a particular state ip € Q, it is especially interesting to
know all of the abstractions to whighis a member. Without loss of
generality, suppose that= R(d1, .. ., dx) and the domains ak’s
arguments ardq, ..., D, then we define theet of abstractions
of ¢, written.4(q), as the following subset of the powerset@f

{R(d1,...,dr) CQ| d; € nodes(D;) A J; € leaves(d,),

Vi, 1 <i <k}

For unary relations there is a total order.dfq), from the most
specific {¢}) to the most generaly). Forn-ary relations, there

is a partial order ond(q) (i.e, A(q) forms alattice of abstrac-
tions). For example, the abstractionsRybduct(iMac, in_stock)

are shown in Figure 5 where arrows point in the direction of gen-
erality. Finally, therank of an abstractiomx = R(d1,...,dx) is
defined a51+Z’1“ depth(dy), wheredepth() is defined as the depth

of a node in a tree. The rank ¢f (the most-general abstraction) is
defined to be zero, and ranks increase as abstractions become more
specific.

In the case of finite domains, RMMs are no more expressive than
?MMS; given an RMM, an equivalent PMM can be obtained sim-
ply by creating a proposition for each tuple@h The advantage

of RMMs lies in the additional support for learning and inference
that the relational structure provides, as described in the next sub-
section.

2.2 Learning and Inference

In PMMs, the only possible learning consists of estimating the
transition probabilitiesy;; and initial probabilitiesr;, and these
estimates can be done reliably only for states that occur frequently
in the training data. In many cases.d, when modeling a user
of a large Web site), most states are not observed in the training
data, but it is still possible to generalize usefully from the observed
behavior to unseen states. RMMs provide a formal framework for
doing this generalization.

For each possible state abstractionwe can define the corre-
sponding initial probabilityr, as the probability that the initial
state is an element of: 7o = 3° 7. Similarly, for each pair
of state abstractiongv, 3) we can define the corresponding tran-
sition probabilitya.,s as the probability of transiting from a state



The number of terms in Equation 1 increases exponentially with
P(g:|) is the probability that the current stategisgiven that the the arity of the source and destination relations. Thus, when these
current state is a member af The abstraction transition probabil- ~ arities are large, and/or when the abstraction hierarchies are deep,
ities a5 can be estimated directly from the training data by count- it may not be practical to compute all the terms in Equation 1. In-
ing. By making suitable simplifying assumptions, they can then be Stead, we can select the more informative ones, and set the mixture
used to estimate the probabilities of transitions that are absent fromWeights on the rest to zero (thus ignoring them). An efficient way

in o to any state ind: aa,p = >_,. ., P(gil@) queﬁ aij, where

the data. For example, if we assume that the destinationgtage
independent of the source stategiven the destination abstraction
B, thenasq = aaq,3P(qq|B3), wherea is the source abstraction.
P(qq|8) can be estimated as unifornP?(qq|3) = 1/|3|, where
|3 is the number of states in abstractignTo make maximum use
of all the available information, we propose to usaiature model
for each transition probability:

Asd P(St:(Jd \ St—IZQS)

Z Z Aa,ﬁaaﬁp(Qd‘ﬁ)

a€A(gs) BEA(qq)

@)

where the sum is over all abstractions of the source and destina-
tion states, and tha, g's are themixing coefficientand sum to

1. The generative model implicit in Equation 1 is that, to gener-
ate a transition, we first choose apair of abstraction lefe]s3)

with probability A3, and then move to destination statewith
probabilitya., 3 P(qq|3). Effectively, this model performshrink-
agebetween the estimates at all levels of abstraction. Shrinkage is
a statistical technique for reducing the variance of an estimate by
averaging it with estimates for larger populations that include the
target one [18]. For example, a forecast of the number of Apple
iMacs sold at a given store can be shrunk toward a more reliable
forecast for this quantity at all stores in the same city of interest.
Equation 1 applies shrinkage across an entire abstraction lattice,
rather than over a single abstraction path (as is more usual). The
mixing coefficients\, g can be estimated in a number of ways:

e RMM-uniform : Uniformly (i.e. all Ao, g’s are equal). This
approach has the advantage of being extremely fast, but may
lead to poor results.

RMM-EM : Using the EM algorithm, as described in Mc-
Callumet al[18]. In preliminary evaluation this option per-
formed poorly, due to insufficient training data, so we did not
evaluate it further.

RMM-rank : Using a heuristic scheme. In particular, we
experimented with the following method:

Nap

Rank«)+Rank 3)
v

Mag < | @)
wheren,s is the number of times that a transition from a
state ina to a state in3 could have occurred in the dafiae(,

the number of visits to a statg € « to which a transition

to a stateg; € ( is possible)k is a design parameter, and
the proportionality constant is derived from the requirement
that theA,g’'s sum to 1. This approach has two desirable
properties: (1) abstractions with very little data have very low
weight; and (2) as the training set size grows, increasingly
specific abstractions will tend to dominate, with the RMM
reducing to a PMM in the infinite-data limit. The choicekof
controls how much data must be seen at a given abstraction
level before that level can have a significant weight; when
nag < k, Aag = 0. In experiments with validation data, we
have found that setting = 10 works well in practice.

of doing this culling is to learn a decision tree with the destination
abstraction as the class, and the arguments of the source relation
as the attributes. More precisely, we learprabability estimation
treeor PET [25], because the goal is to estimate the probability of
each destination abstraction, rather than simply predicting the most
likely destination. Thus, in our experiments we evaluate a third
RMM-variant:

e RMM-PET : Any set of abstractions that form a partition of
the destination states can in principle be used as the class. In
this paper, we consider only the highest level of abstraction
— the relationR; € R of the destination state. We learn a
PET for each source relation separately, and use as candidate
attributes the value of each argument of the source relation at
each level of their respective domain hierarchies. (This, a
ary relation each of whose arguments habstraction levels
yieldskn attributes.) When performing inference for a given
source state, we consider the path the state goes down in the
PET (or, in the general case, the set of paths in all applicable
PETs). Each node in the path has an associated probability
distribution over destination abstractions, and corresponds to
a set ofu, s terms in Equation 1 (one for each abstraction that
the PET predicts). The terms from all nodes along the path
(or, more generally, along the multiple paths) are combined
according to Equation 1, with the shrinkage coefficients com-
puted as described above.

In practice, in large state spaces it is often the case that only a
fraction of the states are directly reachable from a given state. For
example, on a Web site only the pages that the current page links
to are directly reachable from it. In this case, tH&yq|3) terms
in Equation 1 can be replaced by terms that also condition on the
knowledge of the set of stat€gs) that are directly reachable from
gs. For states that are not reachable from P(qq|3,C(s)) = 0.

For states that are reachable frgmunder the previous assumption
of uniform probability,P(gq|3,C(s)) = 1/|C(s)].

Notice that, in principle, any machine learning method could be
used to predict the destination state as a function of properties of
the source state. The approach proposed here implicitly encodes the
learning bias that the abstraction hierarchies over the relation argu-
ments are useful for generalizatiare( two states whose values are
closer in their respective hierarchies are more likely to transition to
the same state than states that are far apart).

2.3 Complexity

We close this section by observing that the complexity of RMM
learning and inference is reasonable. Clearly, there is some per-
formance penalty compared to PMMs; RMMs perform shrinkage
among many estimates whereas PMMs rely on a single value. For-
tunately, the added computation increases only with the number of
abstractions that apply to each state, and this number relates only
to the depth of the domain hierarchies. The computation of a sin-
gle a,q requires|.A(gs) x A(qa)| estimates, compared to a single
estimate for PMMs. However, an approach such as RMM-PET can
greatly reduce this number by identifying the few estimates that are
most informative. The complexity of RMM learning and inference
does not increase with the size of the state space or the amount of
training input. As with PMMs, building the internal representation



of the model and counting the number of visits to each state each4. EMPIRICAL EVALUATION

scale linearly with their respective input. In this section, we address the following questions: (1) Is our
hypothesis correct that RMMs outperform propositional Markov
models when data is sparse? (2) In data-rich environments when

3. ADAPTIVE WEB NAVIGATION PMMs perform well, are RMMs at a disadvantage? (3) Are RMMs

On work on RMMs is motivated by the desire to automatically COmpetitive in terms of CPU time required for learning? (4) Which
personalize websites based on a person’s browsing pattern. Al-Of the RMM-variants (uniform, rank, or PET) performs best?
though individuals vary in their web navigation patterns, mostweb  T0 answer these questions we selected three sets of log data taken
sites have a static organization that is designed for general use. Inffom two real web sitesyww.gazelle.com  (the e-commerce
previous work we proposed th&BTEUSarchitecture for automat-  Sité introduced in the KDDCup 2000 [15]) and the instructional
ically personalizing web sites for individual visitors [3]. Adapta- Pages from our home institutiomww.cs.washington.edu/
tion in PROTEUS follows a two-step approach. FirstRBTEUS education/courses/ - At both sites, we explicitly modeled
mines web server logs to build models of users. Second, as userdVhen users ended a browsing trail, by creating a distinguished
request pages at the siteR®@reusconsiders all the ways in which ~ STOP page that was linked from every page in the site and which
to adapt the sitee(g, add a link between two pages, rearrange USers _|mpI|C|tIy visited at the end of a trail. We represented each
list items on a page, elide content from a long pagte) and se- page in the site as a state and thq input to the models were the
lects the adaptations that yield the greatest expected utility per thelinks users followed during the training period. The experimental
model mined in step one.RATEUSemploys heuristics and a strong task is to predict the probability a user will follow each link given
bias to ensure that this search is efficient. In a study of a dozen the user’s current page. The KDDCup data has the advantage that
users with a wireless web browser®reusreduced the time and It represents the large class of sites dynamlcally-generated from
navigational effort required for users to find information on small- database queries and page templates, but was not ideal because
screen, low-bandwidth devices. some domain modeling questions could not be answered without

Inthe FRoTEUSframework, we found adding shortcut linkstobe ~ the “live” site. Our home institution’s site was useful because it is
particularly useful. A shortcut link connects two previously “dis- operational and we have substantial amounts of data available for

tant” pages in the site, where distance is measured as the numbepining. ) ) ) _
of intermediate pages. For example, if a site contains the pages A, For both sites we collected clickstream data and the list of links

B, and C and the links A-B and B—C, then the shortcut A:-C on each page. Determining hyperlink connectivity was easy at our
would shorten the path from A to C by one link. Concentrating on home institution — we crawled the site and parsed linkage data to
the shortcut creation problem, we developed thetRATH algo- create the model. However, although we had log datanow.

rithm [2], which composes many page transition predictions to pre- 9azelle.com , the site was no longer operational. Hence, we
dict the expected savings every possible shortcut in the site would Were forced to generate an approximate linkage model composed
offer. We experimented with mixtures of propositional Markov of the subset of links that were actually followed in the log data.
models, including first- and second-order models, and found that While this solution is suboptimal (even if a link was never followed,
a mixture of first-order Markov models faired the best, saving visi- ItS presence may have influenced the behavior of visitors), the alter-
tors up to 40% of their navigation effort. native (attempting to randomly add spurious but untravelled links
MINPATH’s performance is limited by the quality of the underly- ~ t0 €ach page) seemed questionable. ) )
ing page navigation model, and, as we have mentioned earlier, first- Generating good relational structure at each site was straight-
order PMMs have a number of weaknesses. The most significant isforward. At our home institution, for example, our model in-
that PMMs cannot offer informed guidance at pages for which there cludes CourseOccurrence(Course, Term) pages for the main
is no training data. If a web page did not exist during the training P2ge of each term’s offering of a courséssignment(Course,
period (or simply wasn't visited), the Markov model can do no bet- Term, Assignment) pages for each problem set assigresd,Con-
ter than predict a uniform distribution over the out-adjacent pages. €Nt onwww.gazelle.com , like at many large web sites, was
This phenomenon is very common on large dynamically-generated generated dynamically by combining queries over a database with
web sites: on a portal site the news stories change every day; cusHTML templates to produce pages. The challenge, however, was
tomers at an e-commerce site typically view product descriptions i inferring the schemata of pages — the set of allowable templates
they haven't previously read; and after a semester is over, studentsnd the parameters that they each required — without having ac-
begin viewing the course pages for a different set of courses. In- €SS to the live web site. Fortunately, the KDDCup log data en-
stead, ideally, we would like the model to take advantage of the c0des a comprehensive set of parameters as part of each request,
relation between pages. For example, customers prefer news sto&nd most of these parameters have an obvious intuitive meaning
ries of a particular genre and products of similar types. If a student (Page template, product identifieesc). We removed records for
views numerous homework pages for a particular course in a given all but the nine most frequently accessed page templates and for
department, then the visitor is likely to continue preferring home- templates whose arguments are not present in the clickstream data
work pages, pages for that course, and courses in that major. (e.0, _search results pa_ges); this set of nine templates was our !nmal
Fortunately, as we demonstrate in the next section, RMMs ad- _candldate for the relation s&. The next challer!ge was determin-
dress the concern of sparse training data in large sites, by makingind the arguments to each relation. By analyzing the frequency of
use of a relational model of the web site identifying semantic cor- Non-null parameter values, it became clear that some of the tem-
respondence between pages, both previously visited and unseenPlates took optional arguments. Because our framework requires
The relational model is frequently already available, in the form of elations to have constant arity, we “split” such a relation into two
a database data model or other conceptual model that the humarPr more relations, one for each non-null argument pattern. This
web site designer developed and maintains with the site content.Process yielded 16 distinct relations’® Finally, for the hierar-
In our evaluation we measure the predictive accuracy of RMMs for chies over the parameter values, we used the trees defined for those
page navigation; in future work we will incorporate RMMs into our ~ Parameters in the KDDCup data. Appendix A provides the detailed
MINPATH implementation and RoTEUSSystem. relational models for both sites.
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Figure 6: KDDCup 2000 data (vww.gazelle.com ). The - Figure 7: Winter 2002 data from UW CSE course 142.Pages

axis shows the number of training instances scaled logarithmically, in the testing set (Winter 2002) did not exist during the training
and they-axis is the average negative log-likelihood of a testing period (Winter 2001 - Fall 2001). RMMs can take advantage of the
example. Curves are based on 2000 testing instances. RMMs out-conceptually similar states to greatly improve prediction.

perform PMMs with as few as ten training examples.

In the following experiments, we compared PMMs with three
RMM-variants: RMM-uniform, RMM-rank, and RMM-PET. We
employed Laplace smoothing in the PMM and in RMM-PET. For
RMM-rank we set thé: parameter at 10.0, a value which had pro-
duced good results on the training data. We compute shrinkage
weights in RMM-PET using EM. For each data set, we trained the
models with varying numbers of examples, and we recorded the
average negative log-likelihood of a testing example. A negative
log-likelihood score is the number of bits needed to encode an av- Sequence
erage testing instance given the model; a perfect model would have
a score of zero.

Our first experiment, which uses KDDCup data fromvw. Figure 8: Probabilistic models.
gazelle.com , shows the substantial advantage that RMMs have
over PMMs (see Figure 6). With only 10 training examples, the
RMMs perform significantly (95% confidence level) better than resents traffic to the pages of a single course, CSE 142 “Computer
PMMs. As the amount of training data increases, all models im- Programming 1,” over a full year. Here, we trained the models on
prove their prediction, but RMM-uniform and RMM-PET consis- data from the instances of 142 in Winter, Spring, Summer, and Fall,
tenﬂy outperform the PMM. Note, however, that as the models 2001 and tested the models on data from the instance in Winter
are given more training data, their relative differences diminish. 2002. Note that the instructors (and course webmasters) were dif-
This result is to be expected: with suitable volumes of training ferentin the two instances; indeed, none of the testing pages even
data, RMM-rank and RMM-PET both converge to a PMM. RMM- existed at the time that the training data was collected. As a result,
uniform’s consistent good performance suggests that all levels of the PMM can do nothing better than predict a uniform distribution
abstraction in this site are predicting state transitions well. Note, over the links on each page. In contrast, an RMM takes advantage
also, that the computation time required for the RMM-variants is Of the related training data (Figure 7).
not substantially more than that for PMMs. The RMM-variants re-  In summary, we conclude that RMMs significantly outperform
quire some preprocessing of the data, to build the abstraction setsPMMs when data is sparse and perform comparably when data is
but this work can be done at learning time, independent of the test- fich. Computation time for RMMs is competitive with PMMs, par-
ing set. Inference in a PMM for a testing example requires only a ticularly when the training data can be preprocessed. The RMM-
single ratio of counts, while a more complex set of counts must be PET technique appears to be the best way to compute the mixing
shrunk together in the RMM-variants. coefficients, with RMM-rank also performing favorably.

Our second experiment uses log data from November 2001 at
our home institution. When trained with successively more data, 5. RELATED WORK
RMM-rank and RMM-PET showed a slightimprovement over PMMs, There are two families of related work that we discuss in turn:
but only when trained on up to 10,000 examples. Because the UW techniques for learning probabilistic models, and algorithms for
CSE education pages form a small site, it is a very data-rich en- web adaptation and personalization.
vironment, and we were pleased that RMMs were not trumped by
PMMs.

Our final experiment uses data from our home institution; it rep-

Structure



5.1 Learning Probabilistic Models shortcuts, adding the links it deems most useful. In our earlier

Considerable work has been performed on a variety of different WOrk, we evaluated a variety of visitor models, includingivéa
probabilistic models; we illustrate this space in Figure 8. The lower Bayes mixture models and mixtures of Markov models, conclud-
left corner represents a simple model containing a number of statesind that a mixture of Markov models performed best for the task.
of varying probability. Moving rightward addsequencénforma- In th|§ paper, we argue that RMMs can perform substantially better
tion and leads to a Markov model. Moving upwards asliscture for this same task.
by which we mean the notion of defining the states in terms of vari- ~ Peérkowitz and Etzioni [24] also address the shortcut problem,
ables and representing the joint probability distribution compactly but they use a simpler prediction method: for each pair of pages
with explicit conditional independence assumptions. Moving back- > @ on the site, their system records how ofi@nis viewed by
wards into the page addslational information — a set of predi-  following some chain of links viaP. When pageP is requested
cates and a domain of variables for each argument. after these statistics have been computed, the system adds the top

Viewed in this context, the connection between RMMs and other 77 Most-requesteq pages as shortcuts. This method doesn't make
first-order probabilistic representations becomes more clear. Fried-the independence assumptions of a first-order Markov model, but
manet al.[10] extended the notion of Bayesian network to propose Probably requires more user data in order to make predictions. Like
probabilistic relational models (PRMs). Objects in a PRM are di- the traditional Markov approaches, Perkowitz and Etzioni's system
vided into a set of classes, and a different probabilistic model is can't predict good shortcuts for pages which weren't visited in the
built for each class, specifying how its attributes depend on each training qlata- _ )
other and on attributes of related classes. Dynamic Bayesian net- [N addition to their work on the shortcut problem, Perkowitz and
works (DBNs) [6’ 7] form a causal dependency graph for uncertain Etzioni deVelOped |nd-eXF|nder [24], Wh|Ch uses page meta-data
temporal reasoning. A DBN has a separate Bayesian network for {0 cluster web pages into conceptually similar groups, and subse-
each time step, in which the values of variables for tinoan de- ~ quently builds coherent index or hub pages of links. The meta-data
pend on the values of variablestin- 1. Thus, DBNs “improve” on is similar in spirit to the values used to instantiate RMM relations,
RMMs in their use of explicit conditional independence amongst a although IndexFinder does not segregate pages into relations, or
set of variables, but in contrast to an RMM every state in a DBN Predict navigation. _ o
is treated the same way — it has the same variables and dependen- Fu etal's SurfLen [11] mines web logs for association rules,
cies. To our knowledge, RMMs are the first probabilistic first-order Suggesting the tom pages that are most likely to co-occur with the
model of sequential processes to be proposed. However, it is inter-Vvisitor's currenF session; the learning method is a form of “market
esting to note that dynamic Bayesian networks can be viewed as abasket” analysis [1]. _ _ _
special form of PRM where there is only one class (the state) and ~Lieberman’s Letizia [17] is a client-side agent that browses the
the only relation is the sequential order between successive states.y/€b in tandem with the user. Based on the user's actiergs (
PRMs have been extended to allow the class to be chosen from ahich links were followed, whether pages were added to a book-
hierarchy [12]. RMMs allow hierarchies over the attributes in each marks file,etc), Letizia estimates the visitor's interest in as-yet-
class, and combining models at all levels using shrinkage. This ap-Unseen pages. Information retrieval measures of page similarity
proach should be useful in PRMs also. One obvious area for future @nd guiding queries have been quite successful at predicting navi-
work is to combine ideas from RMMs, DBNs, and PRMs to define 9ation patterns. WebWatcher [14] and adaptive web site agents [22]
“Dynamic probabilistic relational models” (DPRMS). use machine learning to predict the next link a user will follow —

Hidden Markov models have been extend in a number of ways to & Simplified version of the shortcut problem. Sarukkai [27] uses
accommodate richer state and observation information. For exam-& Markov model of web usage to suggest the most probable links
ple, factorial Markov models [13] decompose model statesfinto ~ @ Visitor may follow, and notes the need to reduce the size of the

non-interacting components, describedkbgtate variable. A fac- ~ Model by clustering the URLs. Space precludes discussion of all
torial Markov model can be viewed as a special case of an RMM, related work on sequence prediction and web usage mining.
in which all states belong to the sarkeary relation, but which The goal of the WebKB project [5] is to populate a relational

has a conditional independence assumption that variables in subknowledge base given the textual content and hyperlink connec-
sequent states depend only on the corresponding variables in theivity of Web pages. This goal is different from that of RMMs
previous state. An area of future work is in exploring how these — RMMs presume the existence of a relational model and predict
conditional independencies can be leveraged by relational Markov transitions using the model. However, it would be interesting to
models. Other extenions of HMMs have been proposegi (Laf- apply the WebKB learning approach to populate a makisicrib-
ferty et al.[16]), and it should be possible to subsume these within iNg @ web siteand use RMMs to predict navigation in that model.
our framework, but we leave this matter for future research. RMMs Although most e-commerce sites are dynamically generated from
are also related to work on abstraction in reinforcement learning database queries, many other large sieeg,(corporate intranets
(e.g, Dietterich [8], Dzerosket al. [9]), and may be useful in that ~ OF academic institution web sites) exist only as large collections of

field. static web pages. The WebKB approach could prove fruitful for
producing the relational information RMMs need for such static
5.2 Adaptive Web Navigation sites.

Finally, much research has been done in recent years on classi-
fying web pagesd.g, Pazzankt al. [21], McCallum, et al. [18]).
Any web page classifier that yields class probabilities can in prin-
ciple be used in place of RMMs for adaptive web navigation. How-
ever, many of these classifiers are based on viewing web pages as
bags of words, and are unable to take advantage of the relational
structure of the site. Incorporating bag-of-words information into
RMMs may be useful and is a direction for future work.

Since Perkowitz and Etzioni challenged the research community
to build adaptive web sites [23], many projects have addressed com
ponents of this task. In this section we highlight the subset of work
related specifically to adaptive web navigation.

Our MINPATH system [2] processes server access logs offline
in order to learn a model of web navigation patterns (similar to
how WebCANVAS [4] builds visitor clusters for visualization). At
run-time MINPATH combines the probabilistic estimates from this
model with distance information to compuggpected savingsf



6.

CONCLUSIONS

This paper introduces relational Markov models (RMMs), a gen-
eralization of Markov models that represent states with first-order
relational predicates and leverage this information to make better
inference. We believe that RMMs are widely applicable to numer-

ous domains such as mobile robotics, speech processing, process

control, diagnosis, and computational biology. This paper makes
the following contributions:

We provide a precise definition of relational Markov models
and describe how to estimate state transition behavior using
shrinkage between abstractions of the states.

We explain how RMMs can be used for adaptive web nav-
igation, and present experiments demonstrating substantial
advantages over traditional Markov models.

We compare several variations of RMMs and found that us-
ing PETSs to select mixture weights preformed the best, fol-
lowed by our RMM-rank approach.

Our experiments have shown that relational Markov models are
a suitable alternative to traditional Markov models — RMMs infre- : ; o . .
quently perform much worse, and can perform much better. When [8] T.G. Dietterich. State abstraction in MAXQ hierarchical
data about all states is available in quantity, or if the relations be-
tween states are not reflected in the distribution of the data, then
RMMs offer no advantage to traditional Markov models. However,

when data is scarce or non-existent about some states, but abun-
dant for conceptually similar states (based on relational abstrac- [0l

tions of the states), relational Markov models significantly outper-
form traditional Markov models. Intuition suggests that this latter
case holds true for the vast majority of web sites, and that RMMs
should prove widely useful.

In future research we plan to both extend relational Markov mod-
els and explore additional applications. An immediate area to pur-
sue is in further developing the RMM-PET approach, by building
PETs to predict finer partitions among the destination abstractions.
An interesting evolution of RMMs is to relational hidden Markov

models, where both the states and the observations are described

by typed relations and shrinkage is carried out over their respec-

tive abstractions. Another direction is incorporating a model clus- [12]

ter identity into the transition probability, such as the identity of a
cluster of visitors at a web site, and shrinking between many mod-

els learned for different sizes and scope of user cluster (such as a

[2] C. R. Anderson, P. Domingos, and D. S. Weld. Adaptive web

navigation for wireless devices. Froceedings of the
Seventeenth International Joint Conference on Atrtificial
Intelligence 2001.

C. R. Anderson, P. Domingos, and D. S. Weld. Personalizing
web sites for mobile users. Proceedings of the Tenth
International World Wide Web Conferen@901.

I. V. Cadez, D. Heckerman, C. Meek, P. Smyth, and

S. White. Visualization of navigation patterns on a web site
using model based clustering. Rioceedings of the Sixth
International Conference on Knowledge Discovery and Data
Mining, 2000.

] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,

T. Mitchell, K. Nigam, and S. Slattery. Learning to construct
knowledge bases from the World Wide Welstificial
Intelligence Journal118(1-2):69-113, 2000.

[6] T. Dean and K. Kanazawa. Probabilistic Temporal

Reasoning. IfProceedings of the Seventh National
Conference on Atrtificial Intelligencd988.

[7] T. Dean and K. Kanazawa. A model for reasoning about

persistence and causati@omputational Intelligence
5:142-150, 1989.

reinforcement learning. In S. A. Solla, T. K. Leen, and K.-R.
Muller, editors,Advances in Neural Information Processing
Systems 12ages 994-1000. MIT Press, Cambridge, MA,
2000.

S. Dzeroski and L. de Raedt. Relational reinforcement
learning. InProceedings of the Fifteenth International
Conference on Machine Learninpages 136-143, Madison,
WI, 1998. Morgan Kaufmann.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning
probabilistic relational models. IRroceedings of the
Sixteenth International Joint Conference on Artificial
Intelligence pages 1300-1307, Stockholm, Sweden, 1999.
Morgan Kaufmann.

X. Fu, J. Budzik, and K. J. Hammond. Mining navigation
history for recommendation. IRroceedings of the 2000
Conference on Intelligent User Interfac&900.

L. Getoor, D. Koller, and N. Friedman. From instances to
classes in probabilistic relational models Rroceedings of
the ICML-2000 Workshop on Attribute-Value and Relational
Learning Stanford, CA, 2000.

single user, a cluster of similar users, and the set of all users at the[13] Z. Ghahramani and M. Jordan. Factorial hidden Markov

site).

A third path of research is to apply RMMs to other domains,

such as mobile robot localization or speech recognition.
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APPENDIX

A. RELATIONAL SCHEMATA FOR
EVALUATION SITES

Al www.gazelle.com

The relations fowww.gazelle.com take up to three param-
eters:Assortment, Product, andCollection. The domain hierar-
chies for these parameters are described explicitly in the KDDCup
2000 data.

Home()
Boutique()
Departments()

Legcare_vendor()

Lifestyles()

Vendor()

AssortmentDefault()
Assortment(Assortment)
ProductDetailLegcareDefault()
ProductDetailLegcare(Product)
ProductDetailLegwearDefault()

ProductDetailLegwearProduct(Product)

ProductDetailLegwearAssortment(Assortment)
ProductDetailLegwearProdCollect(Product, Collection)

ProductDetailLegwearProdAssort(Product, Assortment)

e ProductDetailLegwear(Product, Collection, Assortment)

A.2 www.cs.washington.edu

The structure for www.cs.washington.edu/edu-
cation/courses/ was derived by reverse-engineering the
structure of the existing site. Th&rm and Course domain
hierarchies each contain a root node, a level of interior nodes
(grouping courses by undergraduate, graduette,and grouping
terms by the academic year), and the ground leaf valugRL
variables are URLSs relative to the particu@ourseSite(Course)
or CourseOccurence(Course, Term) to which they apply. The
domain hierarchies folJRL and most other variables are flat,
comprising only of the root node and many leaf values.
CourseWebs()
CourseSite(Course)
CourseSiteOther(Course, URL)
CourseOccurence(Course, Term)
CourseOccurenceOther(Course, Term, URL)
CourseSampleCode(Course, Term, URL)
Administrivia(Course, Term, URL)
AllCoursework(Course, Term)

CourseworkGeneralOther(Course, Term, URL)

Coursework(Course, Term, Number)
CourseworkCode(Course, Term, Number)
CourseworkOther(Course, Term, Number, URL)
Turnin(Course, Term, Number)
AllExams(Course, Term)

Exam(Course, Term, URL)
AllLectures(Course, Term)
LectureOtherGeneral(Course, Term, URL)
Lecture(Course, Term, Number)
LectureOther(Course, Term, Number, URL)
Maillndex(Course, Term, SortBy)
MailMessage(Course, Term, Number)
Section(Course, Term, Section)
SectionOther(Course, Term, Section, URL)



